Effects of clause order and connective type on children’s and adults’
processing of complex sentences

Laura E. de Ruiter (University of Manchester), Anna L. Theakston (University of Manchester), Silke
Brandt (Lancaster University), Elena V. M. Lieven (University of Manchester)

Email: laura.deruiter@manchester.ac.uk

In order to construct a coherent mental representation of the events described in complex
sentences, listeners must be able to interpret connectives to establish the semantic relationship
(e.g., temporality, causality, concession) between the main- and the subordinate clause. An addi-
tional challenge for listeners is that the two clauses can occur in two clause orders, e.g., (1)
She had a coffee before she submitted the paper. vs. (2) Before she submitted the paper, she
had a coffee. In (1), the clause order reflects the order of events in the real world (it is iconic); in
(2), the clause order is reversed. Children have difficulty in comprehending complex sentences.
They misinterpret the temporal order (Clark, 1971; Blything, Davies & Crain, 2015), or reverse
cause and effect (Emerson, 1979). Semantic accounts assume that iconicity is the main factor
affecting comprehension (Clark, 1971). But other hypotheses have also been put forward: Syn-
tactically oriented approaches claim that main-subordinate clause orders should generally be
easier to process (Diessel, 2005). Capacity-constrained approaches assume working memory
(WM) to be a major influence on processing (Blything, Davies, & Cain, 2015). Finally, frequency-
based approaches predict that children’s comprehension should be related to the frequency of
grammatical constructions in the language that they are exposed to (see Ambridge et al., 2015).

However, individual studies have typically looked at only one type of adverbial clause, making it
difficult to determine possible differences and commonalities in the precise influences of differ-
ent factors on children’s performance across sentence types. Our study tests the predictions of
the four approaches by comparing children’s comprehension of complex sentences containing
the connectives after, before, because, and if, taking into account the distributions of these con-
nectives in a dense corpus of child-directed speech (CDS; De Ruiter et al., in prep.).

We tested 71 children’s (37 four-year-olds, 34 five-year-olds) and ten adult controls’ compre-
hension with a forced-choice picture sequence task, systematically manipulating clause order
(subordinate-main, main-subordinate; see Table 1 for conditions and examples). We measured
both accuracy and response times (RT), and collected measures of the children’s general
language ability (CELF-subtests), WM, and executive function (EF).

In terms of accuracy, four-year-olds performed above chance, but showed only a fragile under-
standing of the complex sentences. Five-year-olds performed significantly better than the
younger age group with iconic clause orders, and with before-sentences overall (Fig. 1).
Children’s score on the CELF-subtests predicted performance over and above the experimental
manipulations, but WM and EF did not. Adults’ accuracy was at ceiling in all conditions.
Four-year-olds’ RTs were significantly longer than five-year-olds’. Both child age groups took signifi-
cantly longer to respond to because- and if-sentences compared to after- and before-sentences,
but clause order did not have an effect. Language and cognitive task scores were negatively
 correalted with RTs, but did not predict performance above and beyond the experimental ma-
 nipulations. Adults were significantly faster with before-sentences.

Our results support a semantic account: Children did not perform better with one clause order
(contra syntactic account), but did so with sentences that map chronologically onto events in the
real world, even when the corresponding clause order is less frequent in CDS (contra frequency
account), and independent of WM (contra capacity-constrained). Moreover, longer RTs for
causal and conditional sentences suggest that processing inferences slows down children’s
comprehension. We will discuss the full set of results and their theoretical implications for an
account of children’s developing sentence-processing skills.
<table>
<thead>
<tr>
<th>Connective</th>
<th>after</th>
<th>before</th>
<th>because</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause order</td>
<td>main-sub</td>
<td>sub-main</td>
<td>main-sub</td>
<td>sub-main</td>
</tr>
<tr>
<td>Example</td>
<td>She hovers the house after she paints the old fence.</td>
<td>After she paints the old fence, she hovers the house.</td>
<td>He plays his big drum, before he reads his new book, he plays his big drum.</td>
<td>Before he reads the door, because he sees the snowman, he opens the door.</td>
</tr>
</tbody>
</table>

Table 1: Eight conditions of the experiment, 4 connectives x 2 clause orders (main = main clause, sub = subordinate clause).

Figure 1: Four-year-olds’, five-year-olds’ and adults’ mean proportion of correct responses for after-, before-, because- and if-clauses in subordinate-main and main-subordinate clause order. The dashed red line indicates chance level. Error bars indicate standard errors.

References

De Ruiter, Laura, Theakston, Anna, Brandt, Silke, & Lieven, Elena (in prep). *Complex sentences in British English child-directed speech.*


