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Abstract

Conversation is a dynamic, multimodal activity involving the exchange of complex streams of
information like words, prosody, gesture, eye contact, and backchannels. Understanding how these
different channels interact in naturalistic scenarios is essential for understanding the mechanisms
governing human communication. Past studies suggested that the duration of words is tied to their
predictability in context, but it remains unclear whether this relationship is speaker-oriented (e.g.,
retrieval or production-based) or due to listener-oriented, intelligibility-based pressures (i.e., empha-
sizing unpredictable words to ease comprehension). This study aims to examine the relationship
between predictability and additional acoustic variables, to test how much intelligibility-oriented
principles impact conversation. We use the GPT-2 large language model to assess the relationship
between surprisal, a measure of unpredictability, and several variables known to play an important
role in conversation—the prosodic features of duration, intensity, and pitch. We perform this analysis
on the CANDOR corpus of naturalistic spoken video call conversation between strangers in English.
In keeping with previous results using n-gram predictability, we find that GPT-2 surprisal predicts
significantly higher values for duration. Moreover, surprisal also predicts maximum pitch and pitch
range even when controlling for duration, with mixed evidence for an effect of surprisal on intensity.
Additionally, we investigated listener backchannels (short interjections like “yeah” or “mhm”) and

Correspondence should be sent to Thomas Hikaru Clark, Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 43 Vassar Street, Suite 46-4107, Cambridge, MA 02139, USA. E-mail:
thclark@mit.edu

This is an open access article under the terms of the Creative Commons Attribution License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcogs.70134&domain=pdf&date_stamp=2025-10-27


2 of 30 T. H. Clark et al. / Cognitive Science 49 (2025)

found that listener backchannels tended to be accompanied and followed by a spike in the surprisal
of speakers’ words. Finally, we demonstrate a divergence between the effect of context window size
on the model fit of surprisal to maximum pitch and to other variables. The results provide additional
support for intelligibility-based accounts, which hold that language production is sensitive to a pressure
for successful communication, not just speaker-oriented pressures. Our data and analysis code are
shared: https://osf.io/sqpn6/?view_only=e4d9e36c68b54863bc781e359463e1fe.

Keywords: Surprisal; Prosodic prominence; Uniform information density; Audience design; Proba-
bilistic reduction; Backchannels; Conversation; Large language models

1. Introduction

Conversation involves the coordination of multimodal channels of information between
two or more individuals in real time. As we share information with a conversation partner,
we also dynamically modulate the rate of our speech, the pitch of our voice, and various
nonverbal cues (e.g., eye-contact, gestures, and facial expressions). What explains speakers’
and listeners’ modulation of these cues, and how (if at all) do these cues help conversational
partners communicate successfully?

It is natural to think that speakers coordinate what they say and how they say it during
conversation in order to facilitate robust communication with their conversation partner.
However, whether such coordination reflects listener-oriented or speaker-oriented pressures
is currently unclear (Arnold, 2008; Wagner & Watson, 2010). A notable case study is the
predictability-duration relationship: prior work has shown that words that are more pre-
dictable in their preceding linguistic context (e.g., “read the book” vs. “drop the book”)
tend to be spoken with reduced duration (Bell et al., 2009; Jurafsky et al., 2001; Seyfarth,
2014). Similar relationships have been found for repeated words (Jacobs et al., 2015; Kahn
& Arnold, 2015) and for syllables (Ibrahim et al., 2022). One interpretation of this finding is
listener-oriented: speakers might intentionally slow down and increase prominence for words
that are less predictable in the context of the conversation for the benefit of their conversation
partner, to smooth the flow of information and facilitate comprehension for the listener
(Aylett & Turk, 2004, 2006; Frank & Jaeger, 2008; Jaeger, 2010; Levy & Jaeger, 2006; Pate
& Goldwater, 2015). This account is also known as the intelligibility-based account, since it
emphasizes strategies speakers employ to make their intended message more intelligible for
a listener (Galati & Brennan, 2010; Gahl et al., 2012; Jaeger & Buz, 2017). An alternative
account for the predictability–duration relationship is speaker-oriented: unpredictable words
are simply more difficult to retrieve in the mind of the speaker, leading to slowed production
(Bell et al., 2009; Gahl et al., 2012). In summary, both the listener-oriented and speaker-
oriented accounts suggest that more predictable words should be reduced in duration and that
more surprising words should be longer in duration, but for different reasons. Additionally,
some combination or interaction of listener- and speaker-oriented processes may be at play
(Arnold et al., 2012; Arnold & Watson, 2015).

Recent studies lend support to the listener-oriented account by considering additional
dimensions of prosodic prominence beyond duration, such as pitch and intensity. Under
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a purely speaker-oriented account, the predictability–duration relationship is explained by
higher retrieval latencies for unpredictable words rather than intentional, listener-oriented
emphasis of unpredictable words; this account, therefore, does not explicitly predict a
positive effect of unpredictability on pitch and intensity when controlling for duration. Under
a listener-oriented account, however, multiple dimensions of prosody may be used to render
more important words more prominent. Previous work has linked reduced accessibility for
words to a range of prosodic prominence measures, but it has been difficult to dissociate this
association from intelligibility-oriented pressures (Arnold, 2008; Wagner & Watson, 2010).
At the same time, some work from the second language literature indicates that speakers may
be more likely to mumble—that is, reduce prominence—for words which are difficult for
them to say (Dörnyei and Scott, 1997). Thus, in the absence of clear mechanisms directly
linking retrieval and production difficulties to increased pitch and intensity, we believe
that observing a positive effect of surprisal on pitch and intensity (while controlling for
duration) is more consistent with a listener-oriented interpretation. Under this framework,
two recent findings provide evidence for a listener-oriented account. First, in a corpus study
of English audiobooks, word surprisal (i.e., negative log probability) correlated with a
composite measure of prosodic prominence that includes duration, pitch, and intensity (Wolf
et al., 2023). This suggests that speakers coordinate predictability and multiple aspects of
prosody while reading aloud, consistent with a listener-oriented account, raising the question
of whether such a relationship is also found during natural dyadic conversations. This is
partially answered by a second recent study of dyadic conversations in Mandarin Chinese,
which showed that the predictability of a word as well as its average informativity (its
predictability across all contexts in which it appears) predicts pitch and intensity (Tang &
Shaw, 2021). Yet, it remains unknown whether this predictability-prosody relationship would
extend beyond tonal languages, where exaggerating the pitch of unpredictable words could
disambiguate minimal pairs differing only in tone. In sum, it is currently unclear whether the
correlation between a word’s predictability in context and the acoustic features of prosodic
prominence are best accounted for by speaker- versus listener-oriented pressures during nat-
ural, real-world conversations. Further, whether such a predictability-prosodic relationship is
reflected in response cues from the listener is currently unknown.

Here, we sought to understand the speaker- versus listener-oriented pressures that underlie
how partners coordinate linguistic and nonlinguistic cues during conversation in a large
corpus of dyadic conversations. We asked two main questions. First, we asked to what degree
word predictability explains different dimensions of prosodic prominence during naturalistic
conversation. We hypothesized that word predictability explains variance in prosodic promi-
nence beyond just duration in natural English conversations. Second, we asked to what degree
word predictability explains listener behavior, as indexed by backchannel signals (i.e., short
interjections such as “yeah” or “mhm” that signal a listener’s engagement), which are known
to play an important role in conversation (Gravano & Hirschberg, 2009; Gravano et al.,
2012; Jurafsky et al., 1997; Knudsen et al., 2020; Meyer, 2023; Nguyen et al., 2024; Tolins
& Fox Tree, 2014; Ward & Tsukahara, 2000; Yngve, 1970). If the predictability-prosody
relationship exists in service of the listener, the listener might also coordinate backchannel
signals to reflect this relationship (e.g., using backchannels in response to more surprising
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words spoken by the conversational partner). To test these hypotheses, we leverage the
CANDOR corpus—a large, recent, audio-video dataset of dyadic conversations between
strangers in English (Reece et al., 2023), which is well-suited for shedding light on the
predictability–prosody relationship.

To foreshadow our results, we found that surprisal predicts prosodic prominence, including
maximum pitch and pitch range even when controlling for duration, during natural, dyadic
conversation (Appendix A, Tables 1–4). Specifically, words that are more surprising in con-
text tend to be expressed with increased prosodic prominence by the speaker. Prosodic promi-
nence as indexed by maximum intensity, on the other hand, did not show a consistent effect
from surprisal. Turning to backchannels, we found that backchannels were associated with
elevated surprisal immediately before, during, and immediately after the use of the backchan-
nel. This is consistent with speakers potentially responding to backchannels by introducing
novel information, as has previously been suggested (Bergey and DeDeo, 2024). The slight
increase in surprisal immediately before a backchannel suggests that listener backchannels
may preferentially be used in response to surprising or informative material by the speaker,
though this would imply a very low latency between a speaker’s use of a surprising word and
a listener’s decision to backchannel.

In summary, our results suggest that speakers emphasize words when they are harder to pre-
dict, not just in the dimension of word duration, but in pitch as well. Given that this is difficult
to explain with a solely speaker-oriented account, we conclude that intelligibility-oriented
pressures play a role in this observed modulation of a speaker’s prosody during conversation.
At the same time, listener backchannels may also serve a communicative function by eliciting
the introduction of novel information by the speaker.

2. Materials and methods

2.1. Data

We employ the CANDOR dataset, which consists of video call conversations conducted in
2020 between pairs of strangers (Reece et al., 2023). The total dataset consists of approxi-
mately 1600 conversations, each lasting at least 25 min. Participants were English speakers
(the CANDOR dataset does not specify whether they are native English speakers) living in the
United States. They were not given any specific topic to discuss, and were simply instructed
to “talk about whatever you like — just imagine you met someone at a social event and you’re
getting to know each other” (Reece et al., 2023). The dataset contains the raw audio and video
recordings of the conversation (from both participants), automatically generated transcripts of
the speech (using AWS Transcribe), and questionnaires about the conversation and the con-
versation partner that each participant filled out. Fig. 1 shows a visualization of the various
streams of information present in the CANDOR dataset.

We divided the dataset into exploratory and confirmatory partitions of 50 conversations
each. Our exploratory partition consisted of 50 conversations, which we used to validate our
pipeline for feature-extraction and conduct initial exploratory data visualization and analy-
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Fig. 1. Example snippet of a conversation in Candor, with transcriptions and annotations of selected variables.

sis (97 unique participants; ages 19–63, median 33; 51 female, 41 male, 5 other/no answer).
Our confirmatory partition consisted of 50 randomly sampled conversations, excluding con-
versations in the exploratory partition (98 unique participants; ages 19–65, median 33; 49
female, 46 male, 3 other/no answer). One participant was excluded due to not providing an
age, which was a predictor in our analysis. In total, each of these partitions corresponded to
approximately 21 h of audio conversation.

2.2. Computing surprisal

In previous studies, predictability has typically been computed based on either the pre-
vious word, that is, p(wi | wi−1), or the following word, that is, p(wi | wi+1) (Bell et al.,
2009; Seyfarth, 2014; Tang & Shaw, 2021). Modern large language models (LLMs) now
provide a way to approximate the predictability of words in context using neural networks
trained on vast quantities of text, and with much larger context windows than the n-gram
models of prior work (Devlin et al., 2019; Radford et al., 2019). Large language models
have been shown to capture human-like syntactic generalizations (Hu et al., 2020) and
to have internal representations that are correlated with human neural activity (Schrimpf
et al., 2021). A language model takes in a linguistic string and assigns a probability to
each unit within the string (typically words or sub-word tokens). We compute surprisals for
every word in a conversation using the GPT-2 autoregressive (i.e., left-to-right) language
model. Despite GPT-2 being a relatively small model compared to the current state-of-
the-art LLMs, it has been shown to be a better predictor of human reading times than
much larger models trained on much more data (Shain et al., 2024), which suggests that
it occupies a “sweet spot” in the relationship between model performance and psycho-
metric predictivity (Goodkind & Bicknell, 2018; Oh et al., 2022; Wilcox et al., 2023).
We calculate surprisal on a word-by-word basis, as separated by whitespace; we use the
surprisal correction of Pimentel and Meister (2024) to account for the bias in surprisal values
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introduced by sub-word tokenization and leading whitespace (see also Oh and Schuler,
2024).

In contrast to the small context window of n-gram models, the GPT-2 model we use has
a maximum context window of 1024 tokens (Radford et al., 2019). We consider a range of
context lengths in terms of conversational turns, from 0 turns (indicating that the model only
has access to the current turn), to 4 turns (indicating that the previous 4 turns of conversational
context are provided as context to the language model). In the case of very long previous turns,
context was truncated at the maximum context window size for GPT-2 of 1024 tokens. How-
ever, 91.6% of turns had 50 words or fewer, so, in practice, this was not a concern. While the
concept of a “turn” has no universally accepted definition, we employ the Backbiter strategy
for delineating turns, as defined in the CANDOR dataset (Reece et al., 2023); this involves
defining a turn boundary whenever there is a change of speaker while ignoring backchan-
nel utterances. Past studies of probabilistic reduction typically used only bigram models to
quantify predictability, meaning that the probability of a word in context was only calculated
conditioned on the immediately previous (or immediately following) word. As a result, past
studies included additional predictors such as previous mention of a word in the conversation
(Seyfarth, 2014; Tang & Shaw, 2021), which were included to reflect the fact that longer-range
context can influence word predictability (e.g., words which have been previously mentioned
are more likely to be mentioned again). We take the GPT-2 surprisal predictor as subsuming
other predictability-related variables computed over its context window, and by testing mul-
tiple context window sizes, we can estimate the influence of long- and short-range context
on the predictability effect. In Appendix B, we compare regression models fit with and with-
out an explicit previous mention variable, finding that including previous mention does not
improve model fit (Fig. B1).

2.2.1. Handling of punctuation
The automatically generated CANDOR transcripts contain punctuation such as commas

and periods. We compute surprisal on the transcripts exactly as they are, without removing
punctuation. Applying the method of Pimentel and Meister (2024) yields surprisal values for
each whitespace-separated word, including any punctuation that is included without a space.
However, this means that words with punctuation will tend to have higher surprisal than words
without, all else being equal, despite the fact that punctuation is an artifact of the automated
transcription, not something observable directly in the speech stream. As a result, we exclude
any words that are connected to punctuation from our regression analysis.

2.3. Prosodic features

We quantify the following prosodic features for each word in a conversation: duration,
maximum intensity, maximum pitch, and pitch range. We use the Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017) to extract start and end timestamps for each word in the
dataset (alignment is performed within turns using each turn’s automated transcription and the
corresponding audio). In Appendix C, we compare the extracted durations for words accord-
ing to MFA and the timestamps from AWS Transcribe provided in CANDOR (Fig. C1).
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We use the Parselmouth library (Jadoul et al., 2018), which is built on top of the Praat
software (Boersma and van Heuven, 2001), to extract intensity and pitch features for each
word based on the start and end times for the word and the raw audio, considering only
the audio channel corresponding to the current turn’s speaker. Maximum intensity is mea-
sured in decibels (dB SPL), a logarithmic measure of a sound’s energy above a minimum
perceptible threshold. We measure maximum pitch in semitones above a reference value of
50 Hz. This ensures that perceptually similar anomalies from different baselines (e.g., an
increase in pitch by an octave) would be given the same rating. We measure pitch range as the
change in semitones between the maximum and minimum pitch detected within the span of a
word.

2.4. Backchannels

We employ the Backbiter transcription provided in CANDOR, in which short utterances
containing backchannel words such as “yeah” and “mhm” are not marked as separate turns,
but are placed in a separate backchannel column in the transcript. This contrasts with a naive
model of turn-taking in which every interjection is considered a new turn, which would
lead to highly fragmented conversations. In the original Backbiter transcript, each turn is
coded with a single backchannel onset timestamp (defined as the start of the first-occurring
backchannel in the turn) and a single backchannel offset timestamp (defined as the end of
the last-occurring backchannel in the turn); this coding, therefore, does not provide onset and
offset timestamps for individual backchannels in cases where multiple backchannels exist in
a turn. We aligned this backchannel information with the underlying raw transcription file to
get precise start and end timestamps for each separate backchannel utterance, allowing us to
conduct an analysis in which we examine the surprisal of speakers’ words when time-locked
to the start of each listener backchannel. We only include words with backchannel overlap
that have five words on either side within the same speaker’s turn (in order to be able to visu-
alize the time-course of surprisal before and after a backchannel). We show two conditions,
one where we exclude words that are transcribed with following punctuation (e.g., commas
or periods), and one where we include such words. We note that the presence of punctuation
will tend to increase the surprisal of a word under a language model. We predicted that
we might see a spike in surprisal preceding backchannels, if listeners use backchannels to
acknowledge a surprising or informative word.

2.5. Mixed-effects regression

A word can appear in many different contexts, where it will have different levels of pre-
dictability, but crucially, constant values for any word-intrinsic features such as word fre-
quency or number of syllables. A strong test of whether surprisal predicts a given word’s
prosodic prominence is whether variance in prominence among different instances of the
same word can be explained by surprisal.

To address this question, we perform a linear mixed-effects regression to predict prosodic
features for each word using the lme41 package in R, using a formula of the form:
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duration ∼ surprisal + frequency + numberOfSyllables + speakerAge + speakerSex
+ durationBaseline + speechRate + preWordPause + previousMention + hasPunctu-
ation + (surprisal | word) + (surprisal | speaker) + (1 | wordsFromStart) + (1 | words-
FromEnd)

or

{maximumPitch, pitchRange, maximumIntensity} ∼ surprisal + frequency + speaker-
Age + speakerSex + acousticBaseline + duration + speechRate + preWordPause +
previousMention + hasPunctuation + (surprisal | word) + (surprisal | speaker) + (1 |
wordsFromStart) + (1 | wordsFromEnd)

For a given prosodic response variable, that is, duration, maximum pitch, pitch range, or
maximum intensity, we fit a regression with fixed effects of surprisal and several control
predictors. We include random intercepts for each word and for each speaker, and by-speaker
and by-word random slopes for the surprisal variable. This random-effects structure helps
to account for pitch and intensity variation across speakers (due to either their unique vocal
features or their computer microphone), as well as acoustic variation across words due to
differences between speech sounds.

For all response variables, log word frequency (per million corpus words, calculated based
on the SubtlexUS movie subtitles dataset (Brysbaert and New, 2009)) was included as a con-
trol predictor (all tokens of the same type have the same value, and the alignment of words in
CANDOR to words in SubtlexUS was case-insensitive). The duration of pause preceding a
word was included as a control predictor. Speaker speech rate (each speaker’s average num-
ber of syllables spoken per second, across all utterances from the speaker) was included as a
control predictor. Acoustic baselines were computed using a leave-one-out average: for each
word token and for each of the acoustic variables of duration, max intensity, max pitch, and
pitch range, the average value of the acoustic variable across all other tokens of the same type
was computed and included as a baseline predictor. The position of a word in a turn relative
to turn start and turn ending were added as random intercepts; this is intended to capture the
effect of proximity to turn boundaries on the prosody of a word, which may be nonlinear
in the distance from a turn boundary. Positions 1 through 9 (from either a turn start or turn
ending) are the nonreference levels, while 10+ (10 or more words either from the turn start
or turn ending) is the reference level. When predicting duration, the number of syllables in a
word, as defined by the CMU dictionary in NLTK (Bird et al., 2009), was included as a con-
trol predictor. If the word was not present in the CMU dictionary (e.g., for names, locations,
or nonwords), we use the number of possible hyphen insertion positions from the Pyphen
package (Kozea, 2023) as a fallback.

Words which occurred less than five times in the dataset were dropped from the analysis to
avoid a long tail of low-frequency words which could cause convergence issues with fitting
per-word slopes and intercepts. Words which did not occur in the SubtlexUS word frequency
corpus were also dropped. This resulted in a total of 216,392 observations (words). All con-
tinuous variables were centered and scaled prior to model fitting; thus, for our key predictor
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(a) (b)

(c) (d)

Fig. 2. Cross-correlation between surprisal and prosodic response variables. These are relationships between the
raw data; regression model outputs are shown in Tables A1–A4. Error bands denote 95% confidence intervals
computed across conversations. Concretely, a lag of k indicates that the response variable stream is shifted by k
units relative to the surprisal stream such that the surprisal of the ith word is aligned with the response variable of
the (i − k)th word. There is a noticeable spike in correlation between a word’s surprisal and each of the prominence
measures, while the features vary in the degree of spillover of this correlation onto neighboring words.

of surprisal, coefficients can be interpreted as the effect size (in standard deviations of the
response variable) of a one-standard-deviation increase in surprisal.

To address the concern that the relationships under study may be driven largely by high-
frequency function words, we also repeated the analysis on only the content words in the
dataset (97,087 observations). Content words were defined by excluding the set of English
stopwords in the Python Natural Language Toolkit (NLTK) library (Bird et al., 2009) and the
following filler and backchannel words: oh, uh, um, yeah, and like. All control variables and
model formulas were otherwise identical.

3. Results

3.1. Higher surprisal predicts increased prosodic prominence beyond duration

To visualize the relationship between linguistic surprisal and prosodic prominence, we first
compute the correlation between a word’s surprisal and the following features of prosodic
prominence: duration, maximum intensity, maximum pitch, and pitch range (all prosodic
features were computed at the single-word level). Correlations between surprisal and each
prosodic feature are computed with a sliding offset value to visualize the time-course of this
correlation (i.e., whether a word’s surprisal correlates not just with the same word’s prosody,
but with past or future words’ prosody). Correlations are aggregated across conversations
within the dataset, yielding an overall mean and 95% confidence intervals. Fig. 2 shows the
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resulting cross-correlation plots, which show a positive correlation between surprisal and each
of the prosodic variables. Furthermore, the correlations quickly fall off to near zero when the
surprisal values and prosody values are not aligned, indicating that the surprisal of a spe-
cific word is much more tightly coupled to the prosody of that specific word, as opposed to
generally related to other words in the same vicinity.

To further investigate these correlations, we fit linear mixed-effects regression models to
predict the prosodic feature of interest (i.e., duration, intensity, pitch) using surprisal while
controlling for additional variables (full model formulas and additional details are provided
in Materials and methods: Mixed-effects regression). For the prosodic variables of dura-
tion, maximum pitch, pitch range, and maximum intensity, the effect of surprisal was pos-
itive (Duration: β = 0.023, SE = 0.004, p � .001; Max Pitch: β = 0.041, SE = 0.007,
p � .001; Pitch Range: β = 0.041, SE = 0.004, p � .001; Max Intensity: β = 0.019, SE =
0.006, p = .002; reported coefficients are when using surprisal from language models with
the maximum context length of 4 turns). For the prosodic variable of max intensity, we note
that the results were more mixed than for the other prosodic variables —for regressions per-
formed using different context lengths, the effect had a mixed pattern of significance at the
p = .05 level. Importantly, we detect an effect of surprisal on maximum pitch and pitch range,
even when controlling for duration, which was a positive and significant predictor of each
of these variables (Max Pitch: β = 0.106, SE = 0.003, p � .001; Pitch Range: β = 0.217,
SE = 0.003, p � .001; Max Intensity: β = 0.109, SE = 0.003, p � .001). Full regression
model outputs are provided in the Appendix, Tables A1–A4.

Back-converting the coefficients into the original units, we arrive at the following effects
of surprisal on prosodic variables: effect of surprisal on duration: 2 ms/bit, effect of surprisal
on max pitch: 0.11 semitones/bit, effect of surprisal on pitch range: 0.11 semitones/bit, effect
of surprisal on max intensity: 0.02 dB/bit. The standard deviation of the surprisal variable
is approximately 3.1 bits; thus, a surprisal difference of 3 standard deviations between two
occurrences of the same word could be expected to result in approximately 16 ms in increased
duration, 1 semitone in increased pitch, 1 semitone in increased pitch range, and 0.2 dB in
increased intensity. Full regression model outputs considering content words only are also
provided in the Appendix, Tables A1–A4. Limiting the analysis to only content words pro-
duced qualitatively similar results.

Fig. 3 shows the relationship between surprisal and prosodic features for individual words
(the 20 most common content words in the dataset are shown). The same word, when used
in different contexts, differs in both its surprisal and its average prosodic prominence, and
the majority of individual words exhibit a positive correlation between these two variables.
The examination of content words here suggests that the relationship between surprisal and
prosodic prominence is not driven purely by short, reduced, and predictable function words,
but rather reflects a context-sensitive modulation of the prosodic prominence of words. Qual-
itatively, we note that the relationship among the selected words appears less consistent for
the max intensity variable. This is consistent with the mixed results found in the mixed-
effects regressions.
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Fig. 3. Relationship between surprisal and four response variables for 20 most frequent content words in the
dataset. Content words were defined by excluding the set of English stopwords in the Python Natural Language
Toolkit (NLTK) library (Bird et al., 2009) and the following filler and backchannel words: oh, uh, um, yeah,
and like. Within each panel, each line corresponds to a unique wordform, which may appear in many different
contexts. Crucially, even when examining within individual words, a positive association between surprisal and
prosodic prominence is evident for the dimensions of duration, max pitch, and pitch range; for max intensity, the
pattern is mixed.

3.2. Relationship between word surprisal and listener backchannels

In addition to the relationship between surprisal and prosodic prominence, a secondary
research question in this study pertains to listener behavior: are listeners more likely to
produce backchannel utterances in response to surprising words? Fig. 4 shows time-locked
surprisal values as a function of position relative to a backchannel. Values in the Backchannel
condition are compared to values in the Non-Backchannel condition using a t-test with
false discovery rate correction assuming positive correlation between time positions and
a threshold of p = .05. We observe a significant increase in surprisal in the Backchannel
condition relative to the Non-Backchannel condition, immediately before, during, and after
the backchannel, with surprisal values then returning to the Non-Backchannel baseline level
within a few words. This temporary spike in surprisal could have several possible interpre-
tations, which we address in the Discussion, but it suggests that speakers tend to respond to
listener backchannels by producing words which are not as predictable as would otherwise be
expected.This result is partially consistent with one existing work (Bergey and DeDeo, 2024),
who similarly found that backchannels tended to trigger the introduction of novel material by
the speaker, but also found that surprisal tended to decrease in the lead-up to a backchannel.
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(a)

(b)

Fig. 4. Speaker surprisal time-locked to each backchannel occurrence with at least five preceding and five follow-
ing words in a conversational turn. Position 0 denotes the word which overlaps with the start of the backchannel
(the “critical word”). For comparison, surprisal time-locked to randomly chosen non-backchannel words (words
uniformly sampled with probability 0.05, excluding words overlapping with backchannels) is shown. No previ-
ous turns of context were used for the calculation of surprisal (note that within our dataset, where surprisal was
computed using anywhere from 0 to 4 previous turns of context, surprisal values were very highly correlated for
all pairs of context lengths, with a minimum value of 0.914 and a maximum value of 0.99). In 4a, no restrictions
are placed on the critical word. In 4b, words which contain punctuation are excluded, which results in lower sur-
prisal at the critical word. Stars indicate the significance level of a t-test comparing the mean surprisal at each
word position in the Backchannel condition against the Non-Backchannel condition, with a false discovery rate
correction. In the presence of backchannels, there is a spike in surprisal, with a significant difference between the
Backchannel and Non-Backchannel conditions starting one word before the critical word, spiking sharply, then
decreasing.

3.3. Role of language model context length in predicting prominence

The predictability of a word is sensitive to how much context is provided, and what the
context is; the final word of the sentence “She fills the bucket with fish.” is less surprising
when the preceding sentence is “The zookeeper is preparing to feed the seals.”, compared
to when no previous context is provided. Thus, the context window size (here measured
in number of preceding conversational turns) can affect the surprisal of a word (e.g., by
providing additional context that changes the language model’s estimated probability dis-
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(a)

(b)

Fig. 5. Delta AIC scores comparing model fit when using surprisal from language models with access to 1–4
additional conversational turns of context in comparison to the baseline model (current turn only). Lower AIC
values indicate a better fit to the data. A difference in AIC of greater than 10 in either direction (pink region) is
considered substantial (Burnham and Anderson, 2004). For duration, intensity, and pitch range, surprisal computed
using additional turns of context predicts prominence less well, while for max pitch, surprisal computed with
additional turns of context predicts prominence better.

tribution over the given word). While it has been established that predictability influences
a speaker’s prosody in conversation, it remains unclear whether the human sensitivity to
predictability is best modeled by using short-range or long-range context, though existing
work suggests that there are meaningful differences on the scale of a few words (Regev et al.,
2025). Additionally, other work has suggested that across multiple languages, surprisal from
language models with shorter context windows are better predictors of human reading times
than models with longer context windows, when controlling for architecture (Kuribayashi
et al., 2022, 2024). We investigated this question by comparing the model fit of linear
mixed-effects regression models differing only in the amount of context provided to the
language model when computing surprisal (using a range from 0 to 4 previous conversational
turns). Models were compared using the Akaike Information Criterion (AIC), where lower
values indicate a better fit of the model to the data (Fig. 5). We note that each model was
fit on the same number of observations with the same number of model parameters, with
all predictors besides surprisal being held constant. Our analysis revealed a mixed pattern of
results. For all variables except max pitch, the surprisal values computed using longer-range
context were worse predictors of prominence than surprisal computed using only the current
turn. For max pitch, the opposite pattern held: AIC reached a peak at 1 turn of context, then
decreased when additional turns of context were added to the computation of surprisal.
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4. Discussion

4.1. General discussion

In this paper, we investigated how word predictability relates to different dimensions of
prosodic prominence and listener behavior during naturalistic conversation, as a way of
assessing the influence of listener-oriented, communicative pressures on conversation. In a
corpus of open-ended, dyadic conversation, we found that the surprisal (negative log proba-
bility) of a word in context (as measured by the GPT-2 large language model) is positively
correlated with the word’s duration, pitch, and intensity—three measures of prosodic promi-
nence. Language model surprisal was a significant predictor of max pitch and pitch range even
when controlling for duration. Interestingly, the estimates we found for the effect of surprisal
on duration are slightly lower but of the same order of magnitude to the reported effect of
surprisal on reading times from the psycholinguistics literature (Smith & Levy, 2013; Wilcox
et al., 2023). This suggests that the magnitude of the slowdown incurred per unit of surprisal
is roughly on par across comprehension and production. Additionally, we found that language
model surprisal is also coupled with listener backchannels (brief interjections like “yeah” or
“mhm”)—the surprisal of words from a speaker tends to increase immediately before, during,
and after a backchannel. Our findings suggest that multiple dimensions of speaker behavior
are sensitive to the predictability of words in the conversation; we now discuss the implica-
tions of these findings in the context of the literature.

Our findings tie into a rich literature on the role of information-theoretic principles—and
in particular, the pressure for robust and efficient communication—in shaping human lan-
guage. According to the Uniform Information Density hypothesis (UID) (Jaeger, 2010; Levy
& Jaeger, 2006) and related theories such as the Smooth Signal Redundancy hypothesis (SSR)
(Aylett & Turk, 2004, 2006), language producers tend to spread information smoothly and
uniformly in a given linguistic signal, adopting various strategies to avoid large spikes or
troughs in surprisal. For example, speakers have a greater tendency to insert optional lin-
guistic units, such as the word “that” in the sentence “I liked the movie [that] you recom-
mended,” when upcoming material is unpredictable in context; this has the effect of spreading
out new information, which avoids excessive cognitive load on the comprehender, and makes
the language signal more robust to noise, thereby increasing intelligibility and maximizing
the chances of communicative success (Jaeger, 2010; Levy & Jaeger, 2006). Related theories
such as SSR have proposed that a pressure for information uniformity affects not only what
words people choose to say, but how they choose to say them. For example, prior work on
the predictability–duration relationship has shown that highly predictable words tend to be
reduced in spoken production, which suggests that speakers modulate their speech rate to
keep information density relatively uniform (Aylett & Turk, 2004, 2006). Recent works have
also argued for an influence of information uniformity on other, diverse linguistic phenomena
such as incremental reading times (Meister et al., 2021) and word order rules (Clark et al.,
2023).

At the same time, the UID hypothesis has come under scrutiny based on some negative
results and a lack of clarity on how to operationalize “uniformity” (see Juzek (2024) for a
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critical review). Even in cases like the predictability–duration relationship in spoken produc-
tion, where UID offers a plausible explanation, the phenomenon can be equally well explained
by an alternative, speaker-oriented account (which holds that unpredictable words are simply
slower to retrieve and produce for a speaker) as by the listener-oriented UID account (which
argues that this correlation serves an intelligibility-oriented function). These two explanations
are not mutually exclusive, although some previous work on phonetic reduction has argued
that speaker-oriented pressures dominate listener-oriented ones in words with high phono-
logical neighborhood density (Gahl et al., 2012). Indeed, there are also aspects of language
which appear to go against the principle of UID, such as jokes and creative metaphors, which
typically correspond to local spikes in surprisal (Bunescu and Uduehi, 2022); UID is thus
perhaps best interpreted as a general pressure on language, but one which is by no means
absolute (Tsipidi et al., 2024).

In this work, we show that prosodic prominence is influenced by predictability even
when accounting for the known effect of predictability on duration. This weighs against
an exclusively speaker-oriented account, as there is not a clear link between a word’s
difficulty in retrieval and it being produced with a higher pitch or louder volume, as there
is for duration. We note that our results are still entirely consistent with the existence of
speaker-oriented pressures on production; we simply argue that the evidence also supports
a theory of communication in which speakers modulate their prosody, especially their pitch,
to selectively emphasize words which may be harder for a listener to predict, thereby facili-
tating comprehension (Aylett & Turk, 2004). In this sense, our results align with the general
intelligibility-oriented pressures proposed in the UID literature, without committing to any
strict notion of uniformity per se as an absolute constraint. The fact that there are measurable
relationships between how much information a word conveys in context, and its prosodic
prominence, also offers a possible explanation for the observed redundancy between the
prosody of spoken language and its purely textual representations (Wolf et al., 2023), and
also generates novel testable hypotheses– - that prosody may sound atypical or strange when
less surprising words are pronounced more prominently than more surprising ones.

We now turn to the relationship between language model context length and the model fit of
the surprisal–prominence relationship, in particular, the improvement in model fit when com-
puting surprisal using additional turns of context for the max pitch variable but not for other
variables, such as duration. One interpretation of this result is that the relationship between
surprisal and duration can largely be explained using local context only. This is consistent
with findings from the literature which established a relationship between predictability and
duration using context windows of only a single word (i.e., bigram models) (Seyfarth, 2014;
Tang & Shaw, 2021). The inclusion of longer-range context appears to affect surprisal values
in a way that makes them fit less well to word duration, intensity, and pitch range. It is possible
that language models with access to long-range context may underestimate the surprisal of a
word as experienced by a human speaker, consistent with work showing that some language
models can be “too good” at next-word prediction for a match to human behavior, leading to
worse fits to human reading times (Shain et al., 2024). However, this account is complicated
by the fact that inclusion of longer-range context improves the prediction of maximum pitch
(but not pitch range). One possible explanation comes from work on linguistic constructions

 15516709, 2025, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70134, W

iley O
nline L

ibrary on [27/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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(Bybee and Brown, 2024), which has argued that the relationship between word duration
and predictability is not necessarily a conscious adaptation on the part of speakers to in-
context predictability, but an effect of high-frequency constructions: words are articulated in
a reduced way when part of these high-frequency constructions, but this effect is captured by
short-range contextual predictability rather than discourse-level predictability. It is possible
that this construction-oriented account explains the model-fit pattern for duration, intensity,
and pitch range, while a distinct, intelligibility-oriented pressure explains the pattern for max
pitch. Indeed, from an intelligibility-oriented perspective, it is reasonable to think that long-
range context would influence predictability, and that the words worth emphasizing are ones
that are difficult to predict even with extended amounts of preceding context. This potentially
points to two separate phenomena with differing explanations: on the one hand, probabilistic
reduction of words’ duration, intensity, and pitch range based on largely local relationships
between words, and on the other hand, probabilistic emphasis using higher maximum pitch
for words that are less predictable.

Given these results, an open question is whether speakers have any way of knowing which
words a listener may find surprising, and what signals from a listener may exist to indicate
their level of surprise. Our investigation of listener backchannels attempts to address this
question. Far from passively waiting for their interlocutor’s turn to end, it is well-established
that a listener produces backchannel utterances, which do not interrupt the flow of the speaker
but provide a form of feedback from listener to speaker. These backchannels have been linked
to prosody, narrative development, and other functions within conversation (Gravano et al.,
2012; Jurafsky et al., 1997; Knudsen et al., 2020; Liu et al., 2022; Meyer, 2023; Nguyen
et al., 2024; Tolins & Fox Tree, 2014; Ward & Tsukahara, 2000; Yngve, 1970). One study has
considered the relationship between surprisal and backchannels, finding that backchannels
are more likely to occur following dips in surprisal values, while surprisal tends to spike
again immediately following a backchannel (Bergey and DeDeo, 2024). This suggested
an impressive ability on the part of listeners to keep track of the information content of
words. Our results indicate that surprisal tends to increase immediately before, during, and
after a listener backchannel. This suggests that speakers may react to listener backchannels
by introducing novel information or starting a new clause or idea, which would tend to
increase surprisal temporarily. Our results differ from those of Bergey and DeDeo (2024)
in finding a small but significant rise in surprisal immediately before words that overlap
with backchannels (relative to randomly sampled non-backchannel words), as opposed to a
decrease in surprisal; we note that Bergey and DeDeo (2024) used a different language model
and a different strategy for including conversational context in the computation of surprisal.
Another explanation for these results is that listeners are attempting to wait for natural breaks
in a speaker’s turn in order to produce backchannels, but that these breaks are naturally
followed by the introduction of new material by the speaker; however, our results show this
pattern even when excluding backchannels that occur during words with end-of-sentence or
end-of-clause punctuation (which tend to co-occur with speakers’ pauses).
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4.2. Limitations

We now turn to some limitations of our work. First, these results and their interpretation
depend on the assumption that a language model can assign probabilities to words in context
in a way that aligns with human predictions. We employ the GPT-2 language model, which
has previously been shown to correlate strongly with human measures of processing diffi-
culty, even more so than surprisal values from much larger language models such as GPT-3
(Oh & Schuler, 2023; Shain et al., 2024; Wilcox et al., 2023). However, all language models
are sensitive to the distribution of language within their training data. The conversational
nature of the CANDOR dataset may, therefore, be out of distribution for the GPT-2 model.
We also note that language models may overestimate the surprisal of terms and concepts
that become popularized or salient after the models were trained; for example, topics related
to the COVID-19 pandemic were attested in CANDOR but may be out-of-distribution for
GPT-2 (though we note that GPT-2’s training data contain a broad range of internet text). In
this work, we have decided against training or fine-tuning a language model specifically on
conversational data for two reasons: first, evidence does not support the idea that language
models with lower perplexities are necessarily a better match to human behavior, and second,
training a custom model introduces considerable degrees of experimenter freedom (e.g.,
training dataset and hyperparameters) over using an off-the-shelf, widely used model with an
established link to psycholinguistic features like reading time. Future work is needed to test
whether our results generalize to different language models and conversation corpora, but our
findings of significant fixed effects when including word- and participant-level random effects
suggest that the results were not driven by a small number of individual speakers or words.

Second, there are limitations related to the data quality of the CANDOR corpus, which
involved online recruitment and participation. Due to the nature of the dataset, acoustic
features from conversations were recorded “in the wild” with participants’ own devices, thus
reducing audio quality relative to data collected in a laboratory environment (Sanker et al.,
2021), such as the Buckeye corpus (Fosler-Lussier et al., 2007). While we have accounted
for speaker-level variation in prosodic prominence using by-speaker random intercepts,
the dataset is still less than ideal, especially for evaluating the variable of intensity, which
may vary with a speaker’s distance from their microphone or other artifacts of recording.
Additionally, while recordings in CANDOR were manually reviewed to filter out those with
unusable audio quality, the CANDOR transcripts were automatically generated using the
AWS Transcribe service rather than human-annotated, possibly increasing the number of
expected transcription errors (Stolcke and Droppo, 2017). However, we conducted a post-hoc
evaluation of a small subset of the CANDOR transcripts relative to four human annotators,
and found that the mean word error rate of the automatic transcriptions was on par with
the mean interhuman word error rate (Appendix D, Fig. D1 and D2). While transcription
errors increase noise, we argue that they do not cause systematic bias in the direction of our
observed effects. The most concerning scenario would be if words which are more prominent
are more likely to be incorrectly transcribed, making them more likely to be assigned higher
surprisal values (by virtue of being the “wrong word” for the given context); this could
create a spurious correlation between prominence and surprisal. However, more prominent
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words are intuitively less likely to be incorrectly transcribed, as they have a louder and
longer acoustic signal; we thus conclude that results are unlikely to be driven by a spurious
correlation caused by transcription errors. Another issue with automatic transcriptions is that
the CANDOR transcripts lack a manually coded variable for disfluencies in speech, found
in some previous work (Bell et al., 2009; Seyfarth, 2014). One potential concern would be
that disfluencies may be systematically more likely to be followed by words which are both
high in surprisal and prosodically prominent, contributed to the observed surprisal–prosody
relationship. While we acknowledge the limitation of lacking manually coded disfluencies,
we argue that this pattern would not invalidate the main claim of this paper; in contrast, this
would simply be one special case of an intelligibility-oriented pressure to increase prosodic
prominence at moments when listeners are most likely to need it.

An additional limitation is our study’s exclusive focus on English, which limits its gener-
alizability. We note that our results are generally consistent with findings from an analysis of
Mandarin Chinese speech (Tang & Shaw, 2021), but future work can broaden the languages
under study to see if similar patterns hold in languages with significantly different proper-
ties from English, such as pitch-accent languages. Despite the limitations of the CANDOR
dataset, its online recruitment conveys several advantages, such as a greater number of par-
ticipants, allowing participants to converse in the comfort of their homes, and allowing par-
ticipants to see each other, unlike telephone-based conversational datasets like CALLHOME
(Canavan et al., 1997) or Switchboard (Godfrey et al., 1992).

4.3. Conclusion

To conclude, this paper has investigated the relationship between predictability and
prosodic prominence, finding that prosodic prominence is influenced by contextual pre-
dictability. These results lend support to intelligibility-oriented accounts of human commu-
nication in which speakers modulate their prosody to emphasize informative words. Future
work can consider additional signals in conversation, such as eye contact and gestures, which
may also play a role in facilitating robust and successful communication. Additionally, it
remains unknown what accounts for interparticipant variability in the strength of the relation-
ship between prosody and predictability; future work can address the development of these
patterns during language acquisition as well as their presence in clinical populations with
differences in communication, for example, in autism spectrum disorder.
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Note

1 We considered the relative advantages and disadvantages of frequentist statistical model-
ing in lme4, versus Bayesian regression in brms. Advantages of the Bayesian approach
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include the ability to specify priors and brms returning full posterior distributions over
model parameters, at the cost of greatly increased runtime. In this case, the number of
observations is large (∼ 105), which means that the data likelihood tends to dominate
over a Bayesian prior (e.g., Gelman et al., 2013), reducing the benefit of using brms rel-
ative to its increased runtime. Here, we use lme4 simply to produce estimates of main
effect coefficients; however, in situations where capturing the uncertainty in the posterior
distribution of model parameters is of particular interest, on a reasonably-sized dataset,
readers might consider using a Bayesian approach instead.
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Appendix A: Regression results

Table A1
Regression results for predicting Max Intensity

Context Len. Subset Predictor Estimate Std. Error Pr(>|t|) Sig.

0 Content Words (Intercept) 1.664 0.125 0.000 ***
0 Content Words surprisal 0.010 0.007 0.142
0 Content Words Word Frequency −0.367 0.067 0.000 ***
0 Content Words Previous Mention −0.001 0.007 0.876
0 Content Words age 0.009 0.011 0.393
0 Content Words Sex=Male 0.011 0.023 0.619
0 Content Words Sex=Other −0.006 0.081 0.942
0 Content Words Max Intensity Baseline −2.256 0.025 0.000 ***
0 Content Words duration 0.069 0.002 0.000 ***
0 Content Words Speech Rate 0.019 0.011 0.078
0 Content Words Pre-Word Pause −0.033 0.003 0.000 ***
0 All Words (Intercept) 0.101 0.051 0.061
0 All Words surprisal 0.013 0.007 0.063

(Continued)
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Table A1
(Continued)

Context Len. Subset Predictor Estimate Std. Error Pr(>|t|) Sig.

0 All Words Word Frequency 0.035 0.005 0.000 ***
0 All Words Previous Mention −0.017 0.006 0.007 **
0 All Words age −0.003 0.012 0.772
0 All Words Sex=Male −0.016 0.024 0.524
0 All Words Sex=Other −0.051 0.086 0.557
0 All Words Max Intensity Baseline 0.238 0.004 0.000 ***
0 All Words duration 0.109 0.002 0.000 ***
0 All Words Speech Rate 0.009 0.012 0.452
0 All Words Pre-Word Pause −0.034 0.003 0.000 ***
4 Content Words (Intercept) 1.662 0.126 0.000 ***
4 Content Words surprisal 0.014 0.006 0.011 *
4 Content Words Word Frequency −0.370 0.067 0.000 ***
4 Content Words Previous Mention 0.002 0.007 0.789
4 Content Words age 0.010 0.011 0.359
4 Content Words Sex=Male 0.002 0.022 0.938
4 Content Words Sex=Other 0.000 0.079 0.998
4 Content Words Max Intensity Baseline −2.251 0.026 0.000 ***
4 Content Words duration 0.070 0.002 0.000 ***
4 Content Words Speech Rate 0.023 0.011 0.037 *
4 Content Words Pre-Word Pause −0.034 0.003 0.000 ***
4 All Words (Intercept) 0.098 0.051 0.071
4 All Words surprisal 0.019 0.006 0.002 **
4 All Words Word Frequency 0.036 0.005 0.000 ***
4 All Words Previous Mention −0.013 0.006 0.040 *
4 All Words age −0.002 0.012 0.850
4 All Words Sex=Male −0.015 0.024 0.537
4 All Words Sex=Other −0.046 0.085 0.593
4 All Words Max Intensity Baseline 0.242 0.004 0.000 ***
4 All Words duration 0.109 0.002 0.000 ***
4 All Words Speech Rate 0.012 0.012 0.316
4 All Words Pre-Word Pause −0.035 0.003 0.000 ***

Note. ***: p < 0.001, **: p < 0.01, *: p < 0.05.
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Table A2
Regression results for predicting Pitch Range

Context Len. Subset Predictor Estimate Std. Error Pr(>|t|) Sig.

0 Content Words (Intercept) 0.505 0.191 0.008 **
0 Content Words surprisal 0.037 0.005 0.000 ***
0 Content Words Word Frequency −1.227 0.111 0.000 ***
0 Content Words Previous Mention 0.007 0.008 0.328
0 Content Words age 0.005 0.021 0.801
0 Content Words Sex=Male 0.093 0.044 0.038 *
0 Content Words Sex=Other −0.222 0.156 0.158
0 Content Words Pitch Range Baseline −2.540 0.017 0.000 ***
0 Content Words duration 0.142 0.004 0.000 ***
0 Content Words Speech Rate 0.007 0.021 0.740
0 Content Words Pre-Word Pause 0.003 0.004 0.451
0 All Words (Intercept) 0.293 0.165 0.076
0 All Words surprisal 0.045 0.005 0.000 ***
0 All Words Word Frequency −1.343 0.098 0.000 ***
0 All Words Previous Mention 0.015 0.007 0.021 *
0 All Words age 0.008 0.019 0.668
0 All Words Sex=Male 0.084 0.039 0.036 *
0 All Words Sex=Other −0.052 0.139 0.712
0 All Words Pitch Range Baseline −2.609 0.017 0.000 ***
0 All Words duration 0.216 0.003 0.000 ***
0 All Words Speech Rate −0.003 0.019 0.869
0 All Words Pre-Word Pause 0.007 0.003 0.039 *
4 Content Words (Intercept) 0.515 0.191 0.007 **
4 Content Words surprisal 0.032 0.005 0.000 ***
4 Content Words Word Frequency −1.230 0.112 0.000 ***
4 Content Words Previous Mention 0.010 0.008 0.169
4 Content Words age 0.003 0.021 0.871
4 Content Words Sex=Male 0.087 0.043 0.047 *
4 Content Words Sex=Other −0.199 0.153 0.197
4 Content Words Pitch Range Baseline −2.544 0.017 0.000 ***
4 Content Words duration 0.142 0.004 0.000 ***
4 Content Words Speech Rate 0.010 0.021 0.635
4 Content Words Pre-Word Pause 0.002 0.004 0.500
4 All Words (Intercept) 0.294 0.166 0.076
4 All Words surprisal 0.041 0.004 0.000 ***
4 All Words Word Frequency −1.349 0.098 0.000 ***
4 All Words Previous Mention 0.019 0.007 0.005 **
4 All Words age 0.009 0.019 0.640
4 All Words Sex=Male 0.086 0.040 0.033 *
4 All Words Sex=Other −0.093 0.140 0.508
4 All Words Pitch Range Baseline −2.612 0.017 0.000 ***
4 All Words duration 0.217 0.003 0.000 ***
4 All Words Speech Rate −0.004 0.019 0.854
4 All Words Pre-Word Pause 0.007 0.003 0.048 *

Note. ***: p < 0.001, **: p < 0.01, *: p < 0.05.
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Table A3
Regression results for predicting Max Pitch

Context Len. Subset Predictor Estimate Std. Error Pr(>|t|) Sig.

0 Content Words (Intercept) 0.781 0.168 0.000 ***
0 Content Words surprisal 0.032 0.006 0.000 ***
0 Content Words Word Frequency −0.396 0.096 0.000 ***
0 Content Words Previous Mention 0.000 0.007 0.993
0 Content Words age −0.004 0.021 0.837
0 Content Words Sex=Male −0.454 0.044 0.000 ***
0 Content Words Sex=Other −0.500 0.157 0.002 **
0 Content Words Max Pitch Baseline −1.912 0.014 0.000 ***
0 Content Words duration 0.059 0.003 0.000 ***
0 Content Words Speech Rate 0.023 0.021 0.277
0 Content Words Pre-Word Pause 0.015 0.003 0.000 ***
0 All Words (Intercept) 0.599 0.145 0.000 ***
0 All Words surprisal 0.041 0.007 0.000 ***
0 All Words Word Frequency −0.508 0.084 0.000 ***
0 All Words Previous Mention 0.003 0.006 0.649
0 All Words age −0.006 0.023 0.787
0 All Words Sex=Male −0.525 0.047 0.000 ***
0 All Words Sex=Other −0.453 0.165 0.007 **
0 All Words Max Pitch Baseline −1.938 0.015 0.000 ***
0 All Words duration 0.106 0.003 0.000 ***
0 All Words Speech Rate 0.030 0.022 0.186
0 All Words Pre-Word Pause 0.032 0.003 0.000 ***
4 Content Words (Intercept) 0.726 0.168 0.000 ***
4 Content Words surprisal 0.031 0.007 0.000 ***
4 Content Words Word Frequency −0.408 0.097 0.000 ***
4 Content Words Previous Mention 0.003 0.007 0.626
4 Content Words age 0.000 0.019 0.992
4 Content Words Sex=Male −0.362 0.040 0.000 ***
4 Content Words Sex=Other −0.404 0.146 0.007 **
4 Content Words Max Pitch Baseline −1.921 0.014 0.000 ***
4 Content Words duration 0.059 0.003 0.000 ***
4 Content Words Speech Rate 0.020 0.019 0.308
4 Content Words Pre-Word Pause 0.015 0.003 0.000 ***
4 All Words (Intercept) 0.549 0.145 0.000 ***
4 All Words surprisal 0.041 0.007 0.000 ***
4 All Words Word Frequency −0.523 0.084 0.000 ***
4 All Words Previous Mention 0.007 0.006 0.266
4 All Words age −0.005 0.022 0.830
4 All Words Sex=Male −0.456 0.045 0.000 ***
4 All Words Sex=Other −0.380 0.159 0.019 *
4 All Words Max Pitch Baseline −1.944 0.015 0.000 ***
4 All Words duration 0.106 0.003 0.000 ***
4 All Words Speech Rate 0.027 0.021 0.205
4 All Words Pre-Word Pause 0.032 0.003 0.000 ***

Note. ***: p < 0.001, **: p < 0.01, *: p < 0.05.
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Table A4
Regression results for predicting Duration

Context Len. Subset Predictor Estimate Std. Error Pr(>|t|) Sig.

0 Content Words (Intercept) 1.462 0.296 0.000 ***
0 Content Words surprisal 0.023 0.006 0.000 ***
0 Content Words Word Frequency −4.640 0.177 0.000 ***
0 Content Words Syllable Count 0.043 0.012 0.000 ***
0 Content Words Previous Mention −0.024 0.007 0.001 **
0 Content Words age −0.008 0.005 0.100
0 Content Words Sex=Male −0.024 0.010 0.019 *
0 Content Words Sex=Other −0.045 0.038 0.238
0 Content Words Duration Baseline −5.554 0.028 0.000 ***
0 Content Words Speech Rate −0.091 0.005 0.000 ***
0 Content Words Pre-Word Pause −0.007 0.003 0.025 *
0 All Words (Intercept) 1.201 0.253 0.000 ***
0 All Words surprisal 0.025 0.005 0.000 ***
0 All Words Word Frequency −4.873 0.154 0.000 ***
0 All Words Syllable Count 0.040 0.010 0.000 ***
0 All Words Previous Mention −0.027 0.006 0.000 ***
0 All Words age −0.000 0.003 0.890
0 All Words Sex=Male 0.001 0.006 0.840
0 All Words Sex=Other −0.021 0.022 0.352
0 All Words Duration Baseline −5.688 0.025 0.000 ***
0 All Words Speech Rate −0.090 0.003 0.000 ***
0 All Words Pre-Word Pause 0.004 0.003 0.147
4 Content Words (Intercept) 1.418 0.297 0.000 ***
4 Content Words surprisal 0.021 0.005 0.000 ***
4 Content Words Word Frequency −4.674 0.178 0.000 ***
4 Content Words Syllable Count 0.043 0.011 0.000 ***
4 Content Words Previous Mention −0.021 0.007 0.004 **
4 Content Words age −0.007 0.005 0.133
4 Content Words Sex=Male −0.022 0.010 0.027 *
4 Content Words Sex=Other −0.043 0.038 0.256
4 Content Words Duration Baseline −5.556 0.028 0.000 ***
4 Content Words Speech Rate −0.089 0.005 0.000 ***
4 Content Words Pre-Word Pause −0.007 0.003 0.021 *
4 All Words (Intercept) 1.172 0.254 0.000 ***
4 All Words surprisal 0.023 0.004 0.000 ***
4 All Words Word Frequency −4.899 0.155 0.000 ***
4 All Words Syllable Count 0.039 0.010 0.000 ***
4 All Words Previous Mention −0.024 0.006 0.000 ***
4 All Words age 0.000 0.003 0.959
4 All Words Sex=Male 0.002 0.006 0.692
4 All Words Sex=Other −0.020 0.022 0.381
4 All Words Duration Baseline −5.690 0.025 0.000 ***
4 All Words Speech Rate −0.090 0.003 0.000 ***
4 All Words Pre-Word Pause 0.004 0.003 0.156

Note. ***: p < 0.001, **: p < 0.01, *: p < 0.05.
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Appendix B: Impact of “previous mention” on model fit
Fig. B1 compares the Akaike Information Criterion (AIC) across different context lengths,
with and without the “previous mention” variable.

Fig. B1. Comparison of Akaike Information Criterion (AIC) for different response variables, with and without
“previous mention” variable. Results are shown for analysis on content words only. Lower AIC values indicate
better model fit. Shaded bands denote a region of 5 units on either side of a point; a difference in AIC of 10 is
considered “substantial” (Burnham and Anderson, 2004). We observe that the presence of a “previous mention”
predictor does not yield lower AIC scores than models fit without this predictor, and in fact leads to numerically
higher AIC values across all predictors and context lengths, though the differences are not large enough to be con-
sidered substantial. While past studies of probabilistic reduction included previous mention as a control predictor
due to using very short-context n-gram language models, based on these results, we argue that previous mention
may be subsumed by surprisal when the language model has sufficient context.
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Appendix C: Comparing CANDOR default timestamps with Montreal Forced Aligner
Fig. C1 compares the distribution of word durations under the default timestamps from
CANDOR (using AWS Transcribe) and Montreal Forced Aligner.

Fig. C1. Density plots of word duration for 40 words randomly sampled from the 1000 most frequent words in
our analysis’s subset of CANDOR. We observe that the duration values derived from AWS Transcribe timestamps
tend to have slightly heavier tails for longer duration values, compared to the values derived from the Montreal
Forced Aligner.
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Appendix D: Evaluation of automated transcriptions
To evaluate the quality of the transcriptions provided via AWS Transcribe as part of CAN-
DOR, we performed a manual transcription on a small subset of the data (two randomly
selected 3-min segments of conversation from two different conversations). Annotators were
given the following instructions:

• Put all annotations in a blank text file, with one turn per line (i.e., move to a new line
when the speaker changes—but see note below about backchannels).

• Please do NOT include listener backchannels in the transcript (i.e., when a listener says
something like “yeah,” “mhm” without taking the floor from the speaker, just ignore
this).

• Otherwise, transcribe what you hear, including filler words (“um,” “like”) and false
starts.

• If you are unsure of what word was said, just put your best guess (do not put meta-level
annotations such as “unintelligible”).

• For evaluating word error rate, we will normalize the transcripts for case and remove
punctuation (other than word-internal punctuation like apostrophes within contrac-
tions), so there is no need to worry about these.

We compare the similarity of two transcriptions using Word Error Rate (WER), after nor-
malizing the transcripts by removing capitalization and punctuation. WER is not symmetric,
so for a given pair of transcriptions A and B, we take the mean of the WER when A is the
reference and B is the hypothesis, and vice versa, to form a symmetric similarity metric.
Our results, visualized as a distance matrix in Fig. D1, show that the ASR transcriptions
have comparable mean WER relative to the interhuman average. Specifically, the mean WER
for Human 1, Human 2, Human 3, Human 4, and ASR, respectively, were 0.15332912,
0.23281467, 0.18245587, 0.16327848, and 0.19404922. Thus, the mean WER of the ASR
transcript to the other transcripts was less than the highest mean WER of each of the
human transcripts to other transcripts. We also convert these pairwise distances into a two-
dimensional space using multi-dimensional scaling (MDS), which we plot in Fig. D2. The
MDS visualization shows a cluster of three human annotators who are closer to each other
than to the ASR system, but another human who is even farther away. We note that this anal-
ysis is limited by a small number of annotators and a small sample of conversation snippets
considered, but the results provide a basic sanity-check for the quality of the ASR transcripts.
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Fig. D1. Pairwise evaluation of mean Word Error Rate (WER) for human annotators and CANDOR automated
speech recognition (ASR) transcriptions. WER is normalized to values between 0 and 1, and is computed to
be symmetric by averaging the two asymmetric WER values for each pair of transcripts. We observe that the
CANDOR ASR transcription is generally on par with interhuman agreement—its average WER to the remaining
transcripts is lower than that of the worst-performing human annotator.

Fig. D2. Multi-dimensional scaling (MDS) visualization of WER distance between annotators. MDS attempts to
show each annotator (four humans and one ASR) in two-dimensional space, such that relative pairwise distances
according to the WER distance matrix in Fig. D1 are preserved.
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