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Abstract

We show that children in the Tsimane’, a farming-foraging group in
the Bolivian rain forest, learn number words along a similar developmental
trajectory to children from industrialized countries. Tsimane’ children
successively acquire the first three or four number words, before fully
learning how counting works. However, their learning is substantially
delayed relative to children from the United States, Russia, and Japan.
The presence of a similar developmental trajectory likely indicates that
the incremental stages of numerical knowledge—but not their timing—
reflect a fundamental property of number concept acquisition which is
relatively independent of language, culture, age, and early education.

Introduction

Children’s acquisition of the natural numbers is an exemplar of conceptual
change, where an essentially novel system of concepts is constructed by young
learners (Carey, 2009). Children begin acquiring number words by memoriz-
ing the counting sequence, “one,” “two,” “three,” etc., without knowledge of
each word’s cardinal meaning (Fuson, 1988). Children then progress through a
stereotypical series of subset-knower levels, successively learning the meaning of
“one,” then “two,” then “three” and sometimes “four” (Wynn, 1990, 1992; Sar-
necka & Lee, 2009; Lee & Sarnecka, 2010b, 2010a). After learning the meaning
of “three” or “four,”—typically at around age 3;6 in the US—children undergo
an apparent conceptual shift, and rapidly acquire the meanings of many higher
number words all at once. At this stage, children become cardinal principle (CP)
knowers, and they can accurately use counting to determine cardinality (Wynn,
1990, 1992). In becoming CP-knowers, Carey (2009) argues children undergo
a drastic conceptual change, shifting from an object-based core system for rep-
resenting the small cardinalities to a richer, constructed system capable of rep-
resenting any exact cardinality via counting (for alternatives, see R. Gelman &
Gallistel, 1978; Leslie, Gelman, & Gallistel, 2008). Piantadosi, Tenenbaum, and
Goodman (2012) provide a fully-implemented computational model along simi-
lar lines to Carey (2009), demonstrating that this developmental progression can
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be explained by statistical inference over a rich space of hypotheses, operating in
response to observed data. In this model, learners transition between different
structured hypotheses (compositional functions) that manipulate sets of objects,
as they observe data from parental utterances. Both Carey’s and Piantadosi et
al.’s accounts treat number as a fundamental conceptual innovation—likely re-
flecting deep and uniquely human cognitive processes that eventually come to
support our rich adult conceptual systems. For interesting critiques and dis-
cussion of these theories, see Davidson, Eng, and Barner (2012), Rips, Asmuth,
and Bloomfield (2006, 2008), and Rips, Bloomfield, and Asmuth (2008).

To our knowledge, all previous studies of these stages of numerical learning
have focused on children from industrialized countries, primarily the United
States. Studies of adult numerical knowledge in vastly different cultures, have
revealed that languages need not express natural number concepts at all (Frank,
Everett, Fedorenko, & Gibson, 2008; cf. Gordon, 2004), or provided evidence for
universal and distinct systems of numerical representation (Pica, Lemer, Izard,
& Dehaene, 2004). For learning number words, typical middle-class children in
the United States are in a very particular educational setup including a society
that emphasizes numeracy and education from a young age, the presence of
educational television and toys, and parents who are themselves very highly
educated compared to the global or historical average.

Here, we examine the trajectory of number learning in the Tsimane’, an in-
digenous farming-foraging group in the Bolivian rain-forest (see Huanca, 2008,
for a cultural overview). The Tsimane’ number roughly 8000 and live in vil-
lages in the Department of Beni in lowland Bolivia, near the town of San Borja.
The Tsimane’ have primarily been studied with respect to health (Foster et
al., 2005; McDade et al., 2005; Godoy et al., 2006; Gurven, Kaplan, & Supa,
2007), economics (Kirby et al., 2002; Godoy, Jacobson, & Wilkie, 1998; Godoy
& Jacobson, 1999; Henrich et al., 2001; Reyes-Garcıa, Vadez, & Godoy, 2002;
Huanca, Leonard, & Perez, 2003; Godoy et al., 2010), and indigenous knowl-
edge (Reyes-Garcıa et al., 2003; Reyes-Garcia et al., 2005; Huanca, 1999). For
Tsimane’ children, educational advancement—particularly early education—is
not prioritized, in contrast to most industrialized countries. The types of ed-
ucational toys and television common in the US are not available to Tsimane’
children. Indeed, many adults have no formal education, and poor or no knowl-
edge of basic arithmetic (Piantadosi, Jara-Ettinger, & Gibson, forthcoming).
The Tsimane’ therefore provide an ideal test case for determining what number
word learning looks like away from many features of industrialized culture.

We are primarily interested in whether Tsimane’ children progress through
the same stages of subset knower levels as US children. As we show, Tsimane’
children acquire number words substantially later than their counterparts in
industrialized cultures. Because of this delay, their stages of knowledge are es-
pecially interesting because their number acquisition happens with more mature
cognitive machinery. Several distinct learning trajectories are possible, each po-
tentially quite informative about the underlying representational and learning
mechanisms. For instance, children might come to understand cardinality ear-
lier (in the count list), after learning only one or two number-word meanings
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rather than three or four. This might suggest that maturational constraints
are what prevent learners from making the CP-transition—a three-knower only
becomes a CP-knower when their representational machinery has developed or
aged enough to support the transition. In older children, this development
would have already happened, so learners would make the inductive leap with-
out going through all the stages observed in younger children. An alternative
pattern is that learners might persist up until five- or six-knowers, or higher.
Carey (2009), for instance, suggests that it is meaningful that children make
the CP-transition around three or four, right where their ability to track sets
is limited. If this is true—the CP-transition happens when children run out of
representational resources for smaller sets—and older children have greater rep-
resentational capacities for small sets, they should make the transition later in
the count list. Finally, one could imagine a wholly more variable developmental
trajectory—perhaps children without the educational resources of industrial-
ized countries acquire number words in a more haphazard order or show very
little systematicity. This could happen for certain kinds of learners if there’s
nothing really “special” about the earlier cardinalities that lead to their early
acquisition, or perhaps if parents do not emphasize reciting the counting list in
order.

An alternative to such age effects is that in learning number, the same de-
velopmental stages occur regardless of age. In this sense, number-word learning
could proceed in much the same way as general vocabulary learning, where learn-
ers seem to go through similar stages of growth regardless of their age (Snedeker,
Geren, & Shafto, 2007, 2012). For number learning, the incremental stages of
numerical knowledge might be an inherent part of learning number words. Con-
temporary accounts of knower-levels predict that knower-levels should occur for
any learners of number, likely due representational or inferential considerations
of the learning problem (e.g. Piantadosi et al., 2012; Carey, 2009). If similar
stages of development do not occur for Tsimane’ children—either at the same
or later ages—then the predominant theories must miss an important aspect of
how the learning works; conversely, replication of knower-levels in a very differ-
ent culture and language would indicate that the stages of number knowledge
are truly fundamental to learning number.

Give-N with Tsimane’ children

Research was conducted in the summer of 2012 while in San Borja, Bolivia. We
collaborated closely with R. Godoy and T. Huanca from the Centro Boliviano de
Investigación y de Desarrollo Socio Integral (CBIDSI), who provided translators,
logistical coordination, and expertise in Tsimane’ culture. Our studies were
approved by the Gran Consejo Tsimane’ (Tsimane’ grand council).

We recruited 92 children aged 3 to 12 to perform a simple variant of Wynn
(1992)’s Give-N task (42 males and 50 females). Simultaneously with the child
studies, adults from the village were tested on other numerical tasks.
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Methods

Tsimane’ children were tested in each village’s schoolhouse, which is also used
for gatherings. Because the arrival of researchers is rare and interesting to
the Tsimane’, it proved difficult to separate children for individual testing (a
general feature of working with the Tsimane’). Tests were therefore not private,
as participants were typically surrounded by other children, their parents, and
others from the village. At the start of testing, a translator explained the
task and that people should not provide help to the participants since we are
interested in what the children know. Each child participant was then asked to
move N coins from one half-sheet of white paper to another, with N ranging
through a random order1 of 1, 2, 3, . . . , 8. Occasionally, children would receive
help from others (“pick up one more!” or “that’s right!”). These instances were
noted in the data, and the target quantity was asked for again at the end of
testing. In this case, the response without any help was used as the child’s
response. In a few pilot instances, children were also asked multiple times for
target quantities; for instance, if a child correctly counted 1, 2, and 4 but not
3. These additional trials were run out of curiosity on only several children,
so here we only report and analyze the first response children made to each
cardinality for which they did not receive any help. Due to the time and social
constraints of testing in Tsimane’ villages, children were only asked for each
numerosity one time, other than the occasional repeated trials. This kept the
individual subject time very short (approximately 2 minutes) and prevented
these children who are generally unaccustomed to such testing situations from
becoming bored. Child participants were compensated with both educational
materials (pens, pads, and erasers) and small toys (toy rings, bracelets, and
airplanes). While we almost always observed children pick up the coins one at
a time, we did not typically observe children count out loud, except for some
who performed perfectly or near-perfectly on the task (i.e. CP-knowers).

Sophisticated and elegant techniques have been developed for classifying
children into knower levels (Sarnecka & Lee, 2009; Lee & Sarnecka, 2010b, 2010a;
Negen, Sarnecka, & Lee, 2011). Our primary analysis, however, is concerned
with testing if the data we observe plausibly can be described in a knower-
level theory, rather than finding the best classification for each child. Here,
we therefore construct a classification rule for knower-levels and determine if
our ability to classify children according to this rule out-performs statistically-
matched null data with no inherent knower-levels. We use a rule similar to
Wynn (1992) that formalizes the types of knowledge an N -knower should have2,
namely correctness for the first N cardinalities, and exclusivity such that these

1We also include in our analysis 11 pilot subjects who performed the task always starting
with 1, and then a random order of the other digits.

2We also used the tool developed by Negen et al. (2011), building off of Lee and Sarnecka
(2010b, 2010a), who constructed a Bayesian data analysis model for categorizing children into
knower-levels. For our data, use of the spreadsheet from Negen et al. (2011) gave somewhat
uninterpretable results, likely because of our unusually small number of samples per subject
and a different baseline distribution of responses among Tsimane’ children than is assumed in
their model.
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cardinalities are not given for higher words:

1. A child is a CP-knower if they make at most one mistake on the 8 trials.

2. A child is an N -knower if they are correct on the first N responses, they
never give N for any number words higher than the N ’th, and they get
at most one other answer correct.

3. A child is a 0-knower if they get at most one answer correct, assuming
they are not classified under (2).

4. Otherwise a child cannot be classified into a knower-level.

Because 8 (the entire set) is frequently returned by children, queries to “eight”
are not included in the analysis when applying rules (2) and (3). It is important
to emphasize that there are many possible behavioral patterns that fail to be
classified as a knower level under this scheme. For instance, children who cor-
rectly responded to more than one non-sequential number word would not be
categorized as any “standard” developmental stage. Our classification scheme
therefore implements fairly strong criteria about what we expect children to
look like according to previous developmental studies; the strictness of our rule
means it would be easy for us to fail to find these patterns if Tsimane’ children
truly do behave differently.

Results

Results from the Give-N task are shown in Tables 1 and 2. In these tables, each
row shows a single participant with their responses to each of the eight cardinali-
ties. While the cardinalities were queried in random order, they appear in sorted
order in this table. Several missing data points (e.g. places where children were
helped on both a trial and the repeat, or experimenter errors) are noted with a
dash. For visualization, this table colors correct responses blue. Each row also
shows the child’s age, sex, and number of years of education. Table 1 shows
children who could readily be classified into 0-, 1-, 2-, 3-, 4-, or CP-knower
levels, while Table 2 shows those who were classified as something else, either
5- and 6- knowers, or unclassifiable under our rules (“X”). We note, however,
that what we call CP-knowers here are only children who were very accurate on
the task—we did not explicitly test their knowledge of the relationship between
counting and cardinality.

We find that 76% of children are assigned to a standard subset-knower level
(1-knower through 4-knower or CP-knower). This can be interpreted as roughly
the percentage of children who can be “fit” into a knower-level classification.
As shown in Table 1, there do appear to be knower-level stages, with children
successively figuring out the number words up to four and then transitioning
to knowing all the word meanings. Of the remaining children, 2% are classified
as 5-knowers, 0.0% as 6-knowers, and 22% are unclassifiable under our rules.
However, examination of the data reveals that many of the children who are
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Demographics Cardinality
Knower-level Sex Age Edu. 1 2 3 4 5 6 7 8

0 F 3 1 2 2 4 2 3 3 3 -
0 F 4 0 2 - 2 2 3 4 3 3
0 F 4 0 6 6 6 6 6 6 6 6
0 F 4 0 1 3 1 3 3 3 4 1
0 F 5 0 2 3 8 - 8 8 4 4
0 F 6 1 8 8 8 8 8 8 8 8
0 M 3 0 5 4 6 7 6 6 6 6
0 M 4 0 4 8 8 8 8 8 8 8
0 M 4 0 8 2 8 8 8 8 8 -
0 M 5 1 8 5 6 2 7 - 5 -
0 M 6 0 8 8 8 8 8 8 8 8
0 M 6 0 8 8 8 8 8 8 8 8
0 M 6 1 3 6 8 5 - 1 8 5
1 F 5 0 1 8 6 8 8 6 8 8
1 F 6 1 1 3 4 8 8 6 8 -
1 M 4 0 1 3 - 3 3 4 3 8
1 M 5 0 1 3 5 4 3 3 5 4
1 M 6 0 1 4 4 5 4 5 3 5
1 M 6 0 1 2 2 2 4 5 4 4
2 F 4 0 1 2 4 8 8 6 8 8
2 F 5 0 1 2 5 6 8 8 8 -
2 F 5 1 1 2 4 6 8 8 3 8
2 F 5 1 1 2 3 3 4 3 3 8
2 F 5 1 1 2 3 3 4 3 3 8
2 F 5 1 1 2 3 3 4 4 3 4
2 F 6 0 1 2 4 4 6 5 4 4
2 F 6 0 1 2 6 7 - 3 5 7
2 F 6 1 1 2 4 5 4 5 7 8
2 F 6 1 1 2 4 4 6 5 6 6
2 F 6 1 1 2 5 - 5 5 6 8
2 F 6 1 1 2 5 4 - 4 3 7
2 F 6 1 1 2 3 3 4 5 5 6
2 F 6 1 1 2 3 8 3 5 5 5
2 M 4 0 1 2 4 3 5 4 8 8
2 M 4 0 1 2 4 8 4 8 8 8
2 M 5 1 1 2 8 8 8 8 8 8
2 M 7 2 1 2 4 5 5 4 4 5
2 M 8 3 1 2 3 3 4 5 6 8
3 F 6 1 1 2 3 4 4 5 6 4
3 F 6 2 1 2 3 5 6 6 6 6
3 F 8 1 1 2 3 4 4 5 5 5
3 M 4 0 1 2 3 7 8 8 6 8
3 M 6 1 1 2 3 6 4 6 8 8
3 M 6 1 1 2 3 6 8 7 6 7
3 M 6 1 1 2 3 8 8 8 8 8
4 F 8 2 1 2 3 4 5 5 8 8
4 M 6 1 1 2 3 4 - 5 5 5
4 M 7 1 1 2 3 4 5 5 5 7

CP F 10 1 1 2 3 4 5 6 7 8
CP F 10 3 1 2 3 4 5 6 7 8
CP F 5 1 1 2 3 4 5 6 7 8
CP F 6 1 1 2 3 4 5 6 7 8
CP F 6 1 1 2 3 4 5 6 7 8
CP F 6 2 1 2 3 4 5 6 7 8
CP F 9 3 1 2 3 4 5 - 7 8
CP M 10 4 1 2 3 4 5 6 7 8
CP M 11 2 1 2 3 8 5 6 7 8
CP M 11 2 1 2 3 4 5 6 7 8
CP M 11 4 1 2 3 4 5 6 7 8
CP M 11 5 1 2 3 4 5 6 7 6
CP M 12 2 1 2 3 4 5 6 7 8
CP M 6 1 1 2 3 4 5 6 7 8
CP M 6 1 1 2 3 4 5 6 7 8
CP M 6 1 1 2 3 4 5 6 7 8
CP M 6 1 1 2 3 4 5 6 7 8
CP M 6 2 1 2 3 4 5 6 7 -
CP M 6 2 1 2 3 4 5 6 7 8
CP M 7 2 1 2 3 4 5 6 7 8
CP M 8 2 1 2 3 4 5 6 7 8
CP M 9 3 1 2 3 4 5 6 7 8

Table 1: Behavioral responses of children classified into knower-levels, along
with their sex, age, and education. Blue denotes a correct response. Children
who could not be classified by these rules are shown in Table 2.
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Demographics Cardinality
Knower-level Sex Age Edu. 1 2 3 4 5 6 7 8

5 F 8 2 1 2 3 4 5 7 7 7
5 M 11 4 1 2 3 4 5 7 8 8
X M 5 1 3 2 2 5 6 8 7 8
X M 5 1 1 2 8 8 1 8 8 8
X M 4 0 1 2 2 2 3 2 2 1
X M 4 0 1 2 2 3 1 3 7 5
X F 4 0 1 2 5 8 5 6 5 5
X F 5 0 1 2 2 3 3 1 6 3
X F 5 0 1 2 3 - 2 5 8 -
X F 4 0 3 3 3 4 4 4 3 8
X F 7 2 1 2 4 5 5 8 7 5
X F 8 3 1 2 3 4 4 5 3 4
X M 4 0 1 2 4 4 1 3 2 3
X M 4 0 1 2 3 4 3 3 4 4
X M 6 1 1 2 3 4 3 2 3 3
X M 6 1 1 2 3 4 4 5 3 5
X M 5 1 8 2 3 4 5 4 6 7
X F 4 1 1 2 3 4 4 6 5 5
X M 6 1 1 2 3 4 5 6 5 6
X F 6 1 1 2 3 4 5 6 6 4
X M 6 1 1 2 5 4 5 6 5 8
X M 6 1 1 2 3 5 5 8 7 8

Table 2: Children that were not classified as standard knower levels by our
rules, approximately 22% of children run. Note that most of these children are
very similar to some knower level, but with more than one mistake or higher
cardinality correct. This suggests that many of these children may truly have a
knower level, but are mis-classified due to noise and the strictness of our rules.

counted as “unclassifiable” may actually have a knower-level, and fail to be
classified only due to the strictness of our rules. Similarly, the 5- and 6-knowers
each have only made two off-by-one errors in counting, likely indicating that
they are in truth CP knowers.

It is important to compare these classification rates to a statistical baseline
in order to determine (i) if the percentage of children classified as standard
knower-levels is statistically meaningful, and (ii) if the subset knower-levels
beyond 4-knowers are statistically meaningful. To address this, we performed a
permutation test that shuffled the responses to each number word across children
(see Davison & Hinkley, 1997, for an overview of permutation tests). This
keeps the distribution of responses to each word exactly the same as in our real
data, but scrambles particular responses across children. Therefore, the ability
to classify such shuffled data into “knower-levels” corresponds to a matched
baseline classification accuracy when the process generating the data really does
not have knower-levels. For (i), we find that we are able to classify children
at above chance levels. In shuffled samples, 32% of children are assigned a
standard knower-level (0- through 4-knower, or CP-knower). Our finding of 76%
classification is significantly and substantially above this rate in the permutation
test (p < 0.0001). Thus in real data, we are better able to group kids into knower
levels than in statistically matched null data with no inherent knower-levels.
Note that this analysis counts all of the children in Table 2 as unclassifiable,
which is likely a very conservative assumption. For (ii), we find that neither
the 2% rate of 5-knowers or the 0% rate of 6-knowers is significantly different

7



from their expected values of 0.6% (p = 0.11) and 0.06% (p = 0.95) respectively.
This means that our data provides no statistical evidence in support of 5- or
6-knower levels.

It is also informative to perform the same permutation tests for (i) and
(ii), but only on the non-CP-knowers. Success on this statistical test would
ensure that our significant results are not driven by some children performing
very well (the CP-knowers) and some performing less well. For this, we find that
while 69% of the non-CP-knowers are classified into standard knower-levels, only
54% are classified as such in the permutation test, a substantial and significant
(p = 0.0001) difference. Thus, even among just the non-CP-knowers, we are
better able to “fit” children into a knower-level theory than would be expected
by chance. As above, we can examine the significance of 5- and 6-knowers in
this restricted sample. Here we find more 5-knowers than would be expected
(3% vs. 0.1%, p = 0.004) and no support for 6-knowers (0% vs. 0.1%, p = 0.99).
While this analysis provides some support for 5-knowers in the sample, we note
that this pattern is driven by only two children (Table 2) , both of which could
plausibly be CP-knowers who happened to make two errors.

A key feature of the knower-level theory is that children successively learn the
number words. We can test this successive learning by determining how likely
it is for children to demonstrate knowledge of a number n, but fail on n − 1.
High percentages would suggest that many number words are not learned in
counting order. In fact, as examination of Tables 1 and 2 suggests, we find
that it is relatively rare for children to succeed on n and fail on n − 1: this
occurred on only 9% of the time, as compared to an expected value of 20% in
permuted samples (p < 0.0001). This analysis held also when looking only at
non-CP-knowers (11% vs. 16%, p < 0.0001), suggesting that Tsimane’ children
in the sample learned number words successively.

In general, our analysis shows that the Tsimane’ pattern largely as would
be expected under the knower-level account. Our data provides little support
for the existence of higher subset-knower levels (five- and six-knowers). We
additionally note that the data presented in Tables 1 and 2 intuitively supports
a knower-level hypothesis, with almost all children patterning like subset- or CP-
knowers. In Table 2, there are children who, for instance, look like CP knowers
but make more than one mistake, or who are like N -knowers, but appear to
have partial knowledge of the next several cardinalities. This table also reveals
several children who do not fit well into a knower-level framework—for instance,
a child who gets 2, 3, 4, 5 correct but not 1. We believe such instances are likely
noise, rather than genuine variability in the developmental trajectory.

A striking feature of these results is that children appear to go through these
stages much later than children in industrialized countries. Figure 1 compares
our data from the Tsimane’ to children in the US, Japan, and Russia. Data
from these other countries comes from a variety of knower-level studies3 (Negen
& Sarnecka, 2009, in press; Sarnecka & Carey, 2008; Sarnecka & Gelman, 2004;

3We are grateful to Meghan Goldman and Barbara Sarnecka for compiling and sharing
these data.
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Figure 1: The age ranges of different subset-knower levels from a variety of
previous studies (US, Japanese, and Russian), compared to Tsimane’ children.
The solid ranges show the mean ages plus and minus one standard deviation;
the dotted lines show the minimum and maximum ages for each level. This
demonstrates shows a substantial delay in the course of development, on the
order of 2 ∼ 6 years, for Tsimane’ children.

Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007; Sarnecka & Lee,
2009; Slusser & Sarnecka, 2009, 2011; Slusser, Sarnecka, Cheung, & Barner,
2009). This figure shows the age range for 0- through CP-knowers (“C”) for
each group. Here, the solid ranges denote the means plus or minus one standard
deviation, illustrating the range of typical values (rather than the confidence in
the estimated mean). The dotted lines indicate the minimum and maximum
age for each level. This plot shows that Tsimane’ children are substantially de-
layed relative to these other countries, in some cases essentially starting learn-
ing number only by the time other children are finished, with a delay between
stages ranging from about 2 to 6 years. Note the substantially higher variabil-
ity (standard deviations) for when children learn number in Tsimane’, which is
likely attributable to lower levels of education and numeracy in the Tsimane’
culture, relative to the US, Russia or Japan. The presence of a delay is per-
haps not surprising, given findings showing that children in low-SES groups of
the United States are also delayed in number learning (Sarnecka, Goldman, &
Slusser, forthcoming).

Next, we present a logistic regression analysis, to reveal how the demographic
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Estimate Std. Error z value Pr(> |z|)
Intercept -3.2580 1.0270 -3.172 0.00151 **

Age 0.4853 0.1808 2.684 0.00728 **
Education 0.7109 0.3214 2.212 0.02697 *

Male 0.1678 0.3584 0.468 0.63975

Table 3: Results of a mixed effect logistic regression predicting accuracy from
demographic variables, including random effects of child, queried set size, and
village. Note that age and education have not been standardized, and so the
coefficients can be interpreted as the change in log-odds of a correct response
for each additional year along these variables. Sex is dummy-coded.

predictors—age, sex, and years of education—influence numerical knowledge.
Table 3 shows the results of a mixed effect logistic regression model (A. Gelman
& Hill, 2007), with random effects of target cardinality, child, and village4.
While age and education are substantially collinear (R = 0.81), we find that
the full model is better than the reduced model without age (p = 0.007) and
better than the reduced model without education (p = 0.03). This indicates
that age and education are both significant predictors of number knowledge.
To intuitively interpret the size of these coefficients, the coefficients indicate
that with zero education, the age at which children achieve 50% on the Give-
N task for numbers 1 through 8 (intuitively, the point of a “four-knower” or
approximately the timing of the CP transition) is at about 3.258/0.49 ≈ 6.6
years old. Similarly, we can compare the coefficients for age and education: in
terms of performance on the task, a year of education is worth roughly about
0.71/0.48 = 1.46 years of life without education. Interestingly, in our sample, all
children who were classified as CP-knowers had at least one year of education,
indicating that progressing beyond subset-knower levels might be difficult from
a Tsimane’ child’s typical input, without education.

In order to investigate children’s delayed learning, we additionally examined
children’s knowledge of the counting routine. We attempted to elicit counting
out loud in three of the villages visited. While counting is a skill that US chil-
dren are already able to do by the time they start learning number words at age
2 or 3 (Fuson, 1988), we were generally unsuccessful in eliciting counting among
the Tsimane’ children in this study who were not CP-knowers: 13/38 = 34% of
non-CP-knowers refused to count out loud, 9/38 = 24% counted correctly only
to 4 or fewer, and the rest counted to a number greater than 4 (16/38 = 42%).
We additionally asked parents from two villages if they taught children to count
before school, and 19/24 = 79% reported that they had not, although our cul-
tural experts said that normally parents do. Non-CP-knowers’ refusal to count
is consistent with lack of knowledge of the counting routine, and indeed our sub-
jective sense was that most subset-knowers did not typically know the words for

4Since children in the same village attend the same school, this also corresponds to random
effects of school.
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numbers greater than “three” or “four.” However, psychology paradigms are
unusual to indigenous populations so children’s refusal to count might be due
to other factors such as shyness or confusion.

Discussion

Our results demonstrate that children in a starkly different culture still go
through the same developmental stages in number learning as is observed in
industrialized countries. However, these stages happen at a much later age.
Importantly for developmental theories, the fact that the same developmental
trajectory can occur at such later ages argues strongly against any kind of mat-
urational account of number learning. Indeed, the stages of number knowledge
are not due only to, for instance, cognitive resource limitations of early child-
hood, since the same pattern is found in substantially older children. As such,
our findings echo results from Snedeker et al. (2007, 2012), who demonstrate
that international adoptees who learn language later than typical infants still
show similar developmental patterns in vocabulary growth.

Because these successive stages of number knowledge are found in such dis-
tinct cultural and educational environments, they should be considered one of
the primary data points for developmental theorizing to explain. Carey (2009)
explains these stages by positing that children’s early representations are sup-
ported by a system capable of tracking a small number of objects (Le Corre &
Carey, 2007; Le Corre & Carey, 2008). The resource limitations of this system
prevent it from representing more than 3 or 4 objects, so learners must develop
a new system—based on counting—in order to determine higher cardinalities.
Piantadosi et al. (2012)’s account is closely related, caching out resource limi-
tations in long term conceptual memory in terms of a limited set of representa-
tionally primitive operations (composable functions) available to learners. The
key feature of both of these accounts is that the early stages of numerical knowl-
edge differ in essence from the later representations, and that the early form is
supported by an innate (or very early acquired) system for small set manipu-
lation. In such accounts, the discrete stages of knowledge result from inherent
properties of children’s representational system. This view that the stages of
knowledge are driven by the learner’s core representational system accords with
our finding of similar stages in a substantially distinct culture.

Carey (2009) suggests that it is critically important that children learn to
recite the list of number words in order before making the CP-transition. She
argues that this list provides a placeholder structure that provides a framework
for the CP-induction—moving “one more” in terms of cardinality equates to
one further item on the memorized list of words. An interesting possibility
is that children in this population may not learn the counting routine before
school—and perhaps not at all without school—explaining their overall inabil-
ity or unwillingness to count out loud. If Tsimane’ children do not have this
linguistic structure in place, they may essentially be acquiring number words
primarily in order frequency without regard for their sequential relationship.
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Because number words decrease in frequency (Sarnecka et al., 2007; Barner,
Libenson, Cheung, & Takasaki, 2009), this type of learning would still predict
successive acquisition of low number words. Critically, though, such children
may have difficulty making the CP-transition if they are lacking the placeholder
structure (and the placeholder structure is truly crucial to the key induction).
An important direction for future work will be to explore relationship between
knowledge of the linguistic structure and learning of the meanings, among pop-
ulations like the Tsimane’ where such knowledge is likely highly variable.

Generally, these results support the hypothesis that the stages of numeri-
cal knowledge result from rational statistical learning, a view made explicit in
Piantadosi et al. (2012) but one that would in principle be compatible with pos-
sible formalizations of Carey (2009) or Leslie et al. (2008). Under Piantadosi et
al. (2012)’s account, for instance, learners go through the subset-knower stages
because these stages represent the “best” compromise between having a simple
conceptual system (a 0-knower) and perfectly explaining the observed data (a
CP-knower). As learners accumulate more data, they justify increasingly com-
plex representations, until discovering a CP-knower system. It is reasonable to
expect that older children—or indeed any learners—would make similarly smart
inferences about how to relate their representations to observed data and thus
traverse the same developmental trajectory. The delay in Tsimane’ is explain-
able in this account: while we do not have a Tsimane’ corpus to evaluate the
frequency of number words, it is likely that among indigenous farming-foraging
groups (or hunter-gatherer groups), number words are used much less frequently
than in industrialized countries, and mathematical ability appears to be less
common (Piantadosi et al., forthcoming). In this case, it should simply take
Tsimane’ children longer to acquire the data necessary to transition between
subset-knower hypotheses.

A data-driven explanation for the Tsimane’ learner’s delay fits with many
studies documenting influences on early numeracy in industrialized countries.
For instance, parent-child interaction about numbers is extremely important
(LeFevre et al., 2009; Skwarchuk, 2009; Levine, Suriyakham, Rowe, Hutten-
locher, & Gunderson, 2010; Gunderson & Levine, 2011; Kleemans, Peeters,
Segers, & Verhoeven, 2012), and so children of adults who are less numerate
or place less value on teaching number would incur substantial delays (see also
Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006; Jordan & Levine,
2009). Numeracy across industrialized countries has also been studied exten-
sively. Broadly, children’s performance on numerical tasks correlate with cross-
cultural differences in parental involvement with numeracy (LeFevre, Polyzoi,
Skwarchuk, Fast, & Sowinski, 2010; Lefevre, Clarke, & Stringer, 2002), and the
degree to which early education values mathematics, as compared to other topic
areas (Aunio, Ee, Lim, Hautamäki, & Van Luit, 2004; Aunio et al., 2006; Aunio,
Aubrey, Godfrey, Pan, & Liu, 2008). In light of these findings, the delay among
Tsimane’ is not surprising5.

5We note that in industrialized countries, delayed numerical acquisition substantially hin-
ders later math achievement (Aunio & Niemivirta, 2010; Jordan, Kaplan, Ramineni, & Lo-
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Finally, it is also important to consider other possible influences on Tsimane’
learning. For instance, a possible contributing factor may be the way in which
Tsimane marks grammatical number. Sarnecka et al. (2007) argues that the lack
of grammatical number in Japanese slows Japanese children’s number learning,
although there are other plausible differences between the languages which could
cause the delay (Barner et al., 2009). LeCorre, Li., Huang, Gia, and Carey (un-
der review) present evidence from Mandarin showing that despite apparently
better input for learning, Mandarin learners are delayed, they argue, due to the
Mandarin’s numerical syntax (including classifiers). Tsimane’ maintains a weak
singular/plural distinction, with marking on verbs only in certain situations
(Sakel, 2011), and noun marking only on human referents or when plurality is
focused. Marking is done through the clitic in, which can appear with variable
locations and sometimes multiple times in order to emphasize plurality (Sakel,
personal communication). It is conceivable that if early number learning is sup-
ported primarily by grammatical number, children may be delayed due to the
complexity or variability of this system. However, we believe this is unlikely
to explain the large difference between Tsimane’ and languages like Japanese
(Table 1) in which most utterances lack singular/plural marking. Finally, addi-
tional possibilities for the delay must also be considered, including the fact that
arithmetic in schools is generally taught in Spanish, not Tsimane’, so children
of school age might face a challenge with two languages; indeed, CP-knowers
who counted out loud appeared to primarily do so in Spanish. There is addi-
tionally the possibility that the delay is in part due to other factors that differ
in the Tsimane’, such as documented nutritional and developmental differences
(Foster et al., 2005).

Conclusion

These results suggest that the series of number-knower levels reported for chil-
dren in the US, Japan and Russia is also found in children of the Tsimane’.
Like children in industrialized countries, Tsimane’ children learn the first three
or four number words before arriving at a fundamental insight that rapidly pro-
vides them with higher number word meanings. Interestingly, however, they do
so at a much later age, indicating that the pattern observed in number learn-
ing does not result from, for instance, maturational effects. Following Carey
(2009), these results suggest that the learning trajectory reflects a fundamental
developmental process—one that is not an artifact of US education and culture,
but likely the result of shared cognitive representations and processes. Thus,
our results suggest that this pattern in number learning is a likely developmen-
tal universal, to be expected in any place where children must discover how
language expresses natural number concepts.

cuniak, 2009; Jordan, Glutting, & Ramineni, 2010), although it is not clear how culturally
relevant such effects would be for many of the Tsimane’.
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