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What makes a word memorable? An important claim from past work is that words are encoded by their
meanings and not their forms. If true, then, following rational analysis, memorable words should uniquely
pick out a particular meaning, which means they should have few or no synonyms, and they should be
unambiguous. Across two large-scale recognition-memory experiments (2,222 target words and >600
participants each, plus 3,780 participants for the norming experiments), we found that memory perfor-
mance is overall high, and some words are consistently remembered better than others. Critically, the most
memorable words indeed have a one-to-one relationship with their meanings—with number of synonyms
being a stronger contributor than number of meanings—and number of synonyms outperforms other
predictors (such as imageability, frequency, or contextual diversity) of memorability that have been

proposed in the past.

Public Significance Statement

We all know the feeling of hearing or reading words that really stick in our memory. Here, we show that
certain words are consistently remembered better than others, despite our differences in our exposure to
language and our patterns of language use. Specifically, words that pick out a unique meaning in semantic
memory (like “PINEAPPLE”) are more memorable than words with many synonyms (“HAPPY”) or
words with many meanings (“LIGHT”). We develop a Bayesian model that explains these findings and
makes predictions for new words across languages. Understanding which words lead to longer lasting
memory traces can enable more effective information sharing.
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2 TUCKUTE ET AL.

An avalanche of precise, lucid vocabulary has an advantage as a
manner of expression. Perhaps this comes as no surprise. Effective
word choice is indisputably critical to clear communication. Less
obvious is the impact that word choice has on subsequent memory.
Consider the first sentence of this paragraph. “Avalanche,” “lucid,”
and “vocabulary” are among the most memorable words as measured
by the experiments described later in this article. The remaining
words—“‘precise,” “advantage,” “manner,” and “expression,” in case
you forgot—were among the most forgettable.

What makes “avalanche” stick in our memory? In particular, what
makes a word like “avalanche” stand out in memory so that it is easier
to recognize in a recognition-memory test? The literature provides
several possible explanations. Studies where words are presented
in isolation have found that less familiar, lower frequency words
are easier to recognize though more difficult to recall (Brown &
Lewis, 1981; Gorman, 1961; Kinsbourne & George, 1974; Lohnas &
Kahana, 2013; Schulman, 1967); concrete and imageable words
are both easier to recognize and easier to recall (Gorman, 1961;
Khanna & Cortese, 2021; Klaver et al., 2005; Paivio, 1969; Rubin &
Friendly, 1986; Walker & Hulme, 1999); and emotionally salient
words also enjoy a memory boost in both recognition and recall
(Danion et al., 1995; Kensinger & Corkin, 2003; Phelps et al., 1997;
Rubin & Friendly, 1986).

Past work has also emphasized the importance of meaning (over
the surface form) for the memorability of linguistic strings. In
sentence recognition studies, sentence meanings are better retained
than their surface-level (lexical and morphosyntactic) properties
(Begg & Wickelgren, 1974; Bransford & Franks, 1971; Franks &
Bransford, 1972; Katz & Gruenewald, 1974). Furthermore, deeper
engagement with the word’s meaning—as can be manipulated via
tasks at the encoding stage—facilitates subsequent recognition
(Jacoby & Dallas, 1981). Moreover, for ambiguous words (e.g.,
“jam”), narrowing in on a particular meaning via context (e.g.,
“strawberry jam”) leads to better subsequent memory, but only
when the word is used in the same meaning (e.g., “raspberry jam”)
compared to a different meaning (e.g., “traffic jam”; Light & Carter-
Sobell, 1970). Similarly, in sentence recall studies (using the
classic rapid serial visual presentation paradigm; Forster, 1970),
the sentence meaning is typically well remembered, whereas
the surface properties of the sentence and its composite words
are often forgotten (Potter, 2012; Potter et al., 1980; Potter &
Lombardi, 1990). Expanding on the importance of meaning for
the encoding and retention of linguistic information, we here
explore the effects on memorability of the relationship between
words and their meanings—or, how uniquely a given word is
associated with a particular meaning (e.g., Griffiths et al., 2007;
Monaco et al., 2007; Steyvers & Malmberg, 2003). We build on
these past studies and examine word memorability through the lens
of Bayesian optimal inference by performing a large-scale eval-
uation of a novel two-factor hypothesis about what makes words
stick in memory.

This general approach is rooted in rational models of cognition
whereby human behavior approximates optimal solutions to pro-
blems in the environment (Anderson & Milson, 1989; Anderson &
Schooler, 1991; Chater & Oaksford, 1999; Gershman, 2024;
Tenenbaum et al., 2011). Some past research on verbal memory has
followed this tradition (Dennis & Humphreys, 2001; McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997; Steyvers & Malmberg,
2003). For example, in the “retrieving effectively from memory”

2 <

(REM) model, Shiffrin and Steyvers (1997) suggested that per-
forming a recognition task effectively requires computing a
probability that a given stimulus (e.g., word) is “new” or “old” by
accessing vectors of stored features (for previously encountered
words) and comparing them to the current word’s features.
However, the nature of these features has been a matter of debate
(Annis et al., 2015; Criss & Shiffrin, 2004). “Item-noise models”
(e.g., McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997)
have emphasized intrinsic, context-independent properties of words,
whereas ‘“context-noise models” (e.g., Dennis & Humphreys, 2001)
have focused on the context in which the words occur, and neither
class of model makes strong claims about which particular features
(be they intrinsic or contextual) are encoded and later used during
recognition.

Here we explore a simple idea: given that—as discussed
above—words appear to be encoded by their meanings, we hypoth-
esize that a memorable word unambiguously selects a particular
meaning in the conceptual space. For a word to do this effectively,
it should ideally have no synonyms (i.e., other words that can
express the same meaning), and it should only have a single
meaning (i.e., be unambiguous), as elaborated in the Ideal
Observer Model section.

The idea that words with more meanings would be less mem-
orable is reminiscent of the “fan effect” (Anderson, 1974; Monaco
et al., 2007), in which recognition times for an item increase in
proportion to the number of its distinct attributes. Ambiguous words
can be construed as having a “fan” of associations, one for each of
their meanings. Steyvers and Malmberg (2003) also modeled word
recognition memory as related to a form of the fan effect. They
proposed that words that occur in more diverse contexts in our
past experience with them (as estimated in their study by the number
of different documents a given word occurs in) leave more diffuse
memory traces and provided some empirical support for this
hypothesis. Relatedly, Griffiths et al. (2007) demonstrated that
the number of distinct topics a word is associated with—a measure
that corresponds well with the number of meanings or senses of a
word—is an even better predictor of human recognition perfor-
mance with words associated with fewer topics being recognized
more easily. Below, we directly compare our two-factor model to
that of Steyvers and Malmberg (2003) and Griffiths et al. (2007)
and show that our model explains more variance in memory
performance, presumably because the “fan effect” only captures
one side of the word-to-meaning relationship: the one (word) to
many (meanings) component, but not the many (words) to one
(meaning) component. In fact, as our data show, the latter (number
of synonyms) component explains more variance in word
memorability. The proposed approach here is conceptually similar
to cue competition approaches in discriminative learning (e.g.,
Ramscar et al., 2010), but we leave it to future work to integrate
that class of models with ours.

In the present study, we measured memorability in a word rec-
ognition task, in which participants see a sequence of words (some
of which are repeated) and respond when they recognize a word as
previously seen in the experiment. We operationalize memorability
as the recognition accuracy—the average proportion of correct
responses over all trials that included that word (also see the Overall
Design section).

In the Results section, we start by examining the relationship
between word memorability and the number of synonyms and
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number of meanings. In doing so, we do not intend to ignore the
effects of the many other attested influences on lexical memory (e.g.,
Brown & Lewis, 1981; Paivio, 1971; Steyvers & Malmberg, 2003),
and in subsequent analyses, we consider the impact of additional
factors above and beyond our two critical predictors. To foreshadow
our results, we find that the number of synonyms and the number of
meanings matter, alongside many of the other proposed factors that
we consider from the literature that show expected effects (e.g.,
frequency, concreteness, and imageability).

Ideal Observer Model

We propose a Bayesian model of the word recognition task in
which a rational agent encounters a word (at the first presentation)
and stores a meaning m selected by that word. The agent is then
asked, at a later time, whether a word w, has been previously
encountered. At that time, the agent has access to the stored meaning
m and the current stimulus w. and must decide whether the original
word that generated m is the same as the current word w,.. (Note that
we are not proposing that such a process fully explains how humans
perform this task but are merely using this model as a tool for
deriving testable quantitative predictions about how a rational agent
would act. In particular, we make a simplifying assumption here by
reducing the problem to one of only a previous word and a current
word, without considering list or ordering effects.) Formally, the
agent must assess the probability that the new word w is the same as
the originally encountered word, which can be expressed as the
probability that the random variable W takes on the value w,. given
the stored meaning m. Applying Bayes’ rule, this probability can be
written as follows:

P(m|W =w,)P(W=w,)
>, PomW = w)

P(W = w|m) = (1)

This formula has an intuitive interpretation. The agent is asses-
sing, “out of all the possible ways I could have ended up with this
meaning m in my memory, what are the chances that w, generated
it?” As such, memorability can be operationalized as the expected
value of P(W = w, | m).

According to this model, a word that has been encountered might
not be remembered for two reasons:

1. P(@m| W =w,) is high, but P(m | W = w;) for some other
word(s) w; is also high. This is a case where w,. has one or
more synonyms, such that the meaning m can be expressed
by several words, which will compete with w, as the cause
of the memory. This scenario is illustrated in Figure 1A.
Because “HAPPY” has many synonyms (e.g., “CHEER-
FUL,” “JOYFUL,” “GLAD”), any one of these words
could have generated the relevant meaning m.

2. Pm|W=w,)islow (i.e., the distribution over a word’s
meaning has high entropy). This is a case where w, is
ambiguous, that is, it has more than one meaning. An
ambiguous word, like “LIGHT” (which has several mean-
ings: e.g., a fixture in a house, the opposite of “heavy,” a
cigarette lighter), can be forgettable for two reasons. One
possibility is that a single meaning is accessed and robustly
activated during the initial encounter, but a different
meaning is accessed during the repeat occurrence. This

scenario is illustrated in Figure 1B(i). The word “LIGHT”
would not be recognized because no memory trace exists
of the meaning of “cigarette lighter,” accessed during the
repeat occurrence (because the meaning “a fixture in a
house” was accessed during the first encounter). Another
possibility is that during the initial encounter, multiple
meanings are accessed, and each is activated to some
degree, but not as strongly as a meaning of an unambiguous
word. This scenario is illustrated in Figure 1B(ii). The word
“LIGHT” would not be recognized because none of the
meanings were sufficiently robustly activated during the
initial encounter, leading to a weak subsequent memory of
all of the meanings (a diffuse memory trace) and/or
competition among the different meanings.

It is worth noting that a word may also not be remembered if it
reappears when P(W =w,) is low; conversely, a particular distractor
may generate a false positive if it has a high P(W = w,). The term
P(W=w,) expresses the a priori probability that the random variable
W has the specific value w,, which is equivalent to the probability
of seeing a word repeated. In our experimental setup, this value is
similar for all critical words in our task, given that any word that
appears once in the task has the same probability of repeating, and
no word appears more than twice over the course of the experiment.
Thus, we do not expect the prior probability P(W = w,) to play a big
role, although it is possible that participants have prior expectations
about the kinds of words that are likely to appear in experiments.

On the other hand, a word that has been encountered is likely to be
remembered when:

3. Pm | W =w,)is high, and P(m | W = w,) for all other
word(s) w; is low. This is a case where w, has no synonyms
and a single meaning (i.e., it is uniquely associated with its
meaning). This scenario is illustrated in Figure 1C. Because
no competition arises either among the synonyms of the
word w, for the cause of the memory of meaning m or
among its multiple meanings, the agent can be certain that
if they have a memory representation of the meaning
“PINEAPPLE,” then the word “PINEAPPLE” must have
been encountered, given that only “PINEAPPLE” could
have given rise to this memory.

From the above analysis, we derive two predictions for properties
that should make a word memorable:

1. Words that have no/few synonyms should be more
memorable than words with many synonyms.

2. Unambiguous words should be more memorable than
words with two or more meanings.

We do not focus on specific quantitative predictions from the
model but rather use the model to motivate these factors. Note that
word frequency—shown to affect recognition memory in much past
work (e.g., Brown & Lewis, 1981; Schulman, 1967)—does not
directly figure into our proposal. Instead, better recognition memory
for rare words falls out of the fact that words with few synonyms and
few meanings tend to be low-frequency words (Fenk-Oczlon &
Fenk, 2010; Jones et al., 2017; Piantadosi et al., 2012; see also
Monaco et al., 2007, for evidence that the frequency effect in
recognition memory is related to the structure of the semantic space).
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Figure 1
Schematic Illustration of Critical Predictions From the Ideal Observer Model

Initial occurrence Repeat occurrence

(A) Many synonyms
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(i) Many meanings (scenario 2)

“‘LIGHT” “LIGHT”
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(C) Few synonyms and meanings (1:1 mapping)

“PINEAPPLE” “PINEAPPLE”

@% @g

Note. The first column illustrates the representation of the initial occurrence of a word, and the second column
illustrates hypothesized representations of the repeat occurrence of the same word. In each case, the large circle
represents semantic memory, and smaller circles within it represent the portion(s) of the semantic space that is/are
activated by particular words, with darker circles corresponding to stronger activation. (A) A word like “HAPPY”
with many synonyms (e.g., “CHEERFUL,” “JOYFUL,” “GLAD?”) is predicted to be forgettable as any of the
synonyms could have generated the relevant meaning. (B) A word like “LIGHT” with many meanings (e.g., a
fixture in a house, the opposite of “heavy,” a cigarette lighter) is predicted to be forgettable either because a
different meaning is activated at the repeat occurrence from the one activated at the initial occurrence (i), or
because several meanings are activated (to different degrees), leading to a diffuse memory trace (similar to
Steyvers & Malmberg’s, 2003 proposal) (ii). (C) An unambiguous word with no synonyms (i.e., a word that has a
unique association with its meaning), like “PINEAPPLE,” is predicted to be memorable. See the online article for
the color version of this figure.

Method Overall Design

For the remainder of the article, we use the term “experimental
item” to denote the items in the experiment, which are typically
words, but sometimes consist of multiword phrases, as clarified
under the Materials section.

We evaluated the ideal observer model of word memorability in
two large-scale behavioral recognition-memory experiments, each
with 2,222 target words (henceforth “experimental items”), 8,000
9,000 filler experimental items, and over 600 participants (n = 672
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in Experiment 1 and n = 631 in Experiment 2). Building on past
work on image memorability (e.g., Bainbridge et al., 2013; Isola
etal., 2014; Isola, Xiao, et al., 2011), the experiments were designed
as repeat detection tasks in which participants viewed a long
sequence of experimental items, presented one at a time, and were
asked to press a key whenever they noticed a repeat (an experimental
item that they had already encountered earlier in the sequence;
Figure 2). Critical repeats used to measure experimental item
memorability occurred at lags of 91-109 experimental items.
Approximately one out of every five experimental items was a
critical repeat (by design, no critical repeats occurred during the first
90 experimental items). To ensure that participants were paying
attention, vigilance repeats (chosen from a set of filler experimental
items) occurred at lags of 1-7 experimental items.

For each target experimental item in the experiment, we empir-
ically defined three measures of memorability: hit rate (proportion
of trials on which a repeat was correctly detected; given that a repeat
of any given target experimental item occurred at most once for
any given participant, this measure can be rewritten as “proportion
of participants who correctly detected a repeat”), false alarm rate
(proportion of trials on which a repeat was incorrectly claimed—or
proportion of participants who incorrectly claimed a repeat), and
accuracy [(hits (correct detections) + correct rejections on initial
presentation)/(hits + correct rejections on initial presentation +
missed detections + false alarms on initial presentation)].

Participants

Participants were recruited using https://www.amazon.com’s
Mechanical Turk crowd-sourcing platform. Only workers with a
U.S. IP address and an approval rating of >95% were allowed to
participate. Six hundred seventy-two participants took part in
Experiment 1, 631 participants took part in Experiment 2, and
3,780 participants took part in the norming studies, as elaborated
below. The experiments were conducted with approval from and
in accordance with the Committee on the Use of Humans as
Experimental Subjects at the Massachusetts Institute of Technology.
Demographic information was not collected. Participants gave
informed consent before starting each experiment and were com-
pensated for their time.

Figure 2
Lllustration of the Experimental Paradigm

Vigilance repeat (1-7 experimental items apart)

The participant exclusion procedure for the critical memory
experiments was identical to the one reported by Isola, Xiao, et al.
(2011). In brief, experimental item sequences were broken up into
“levels” that each consisted of 120 experimental items (and lasted
4.8 min). At the end of each level, the participant saw their correct
response average score for that level and was allowed to take a short
break. Participants could complete at most 30 levels and were able
to exit the experiment at any time, including in the middle of a level.
Worker performance was continuously monitored within each
level, resetting at the end of the level. The experiment ended if a
participant fell below a 50% success rate on the last 10 vigilance
repeat trials or above a 50% error rate on the last 30 nonrepeat trials.
When this happened, all data collected on the experimental items
at the current level were discarded, but data up to that level were
retained, and the participant was flagged. Participants were allowed
to restart the experiment as many times as they wished until
they completed the maximum of 30 levels. Upon each restart, the
sequence was reset so that the participant would never see an
experimental item they had seen in a previous session. Participants
who received three flags (as noted above) were blocked from further
participation in the experiment; this choice was made to exclude
“bots” and participants who were not trying to perform the task and
answered randomly.

In Experiment 1, participants saw between 4 and 1,353 trials, with
amedian of 269 and a mean of 445.8. All participants were exposed
to at least one target trial. The median participant saw 74 target
repeat trials, and 664 participants saw at least one target repeat trial.
In Experiment 2, participants saw between 2 and 1,255 trials, with
a median of 297 and a mean of 465.5. The median participant saw
86 target repeat trials, and 619 participants saw at least one target
repeat trial.

Materials
Experiment 1

A frequency-weighted sample of 13,980 words (not multiword
phrases) was extracted from Subtlex (Brysbaert & New, 2009), such
that a word that is twice as frequent in Subtlex was twice as likely
to be included in our sample. The experimental items were then
semimanually filtered in order to remove offensive experimental

STORM + PINEAPPLE + STORM + .'IE)(.) LONDON + PINEAPPLE +
1s 145 I I
Memory repeat (91-109 experimental items apart) Time
»
>

Note. The procedure was identical across Experiments 1 and 2. Each experimental item was presented for 1 s, with 1.4 s intertrial intervals, giving participants
2.4 s to respond. Participants were asked to press the r key when they encountered an experimental item that had already occurred at some point in the
experiment. Critical memory repeats (for the 2,222 target experimental items in each experiment) occurred between 91 and 109 experimental items apart, and
vigilance repeats—between 1 and 7 experimental items apart. See the online article for the color version of this figure.
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items, alternate forms of the same experimental item (color/colour),
and experimental items that are clearly morphologically related
(happy/happiness). From the remaining set of 11,182 experimental
items, 2,222 experimental items were randomly selected for use as
targets, and the rest were used as fillers in the experiment.

Experiment 2

A set of 10,320 experimental items was manually constructed
to span diverse semantic domains and major parts of speech. The
nouns were selected from the following 31 semantic categories:
building components, calendar items, chemical elements, clothing,
common names, containers, diseases and conditions, drinks, earth
formations, family relations, famous landmarks, famous people,
food, furniture, games, geography, household items, human body,
human dwellings, living things, medicine, musical instruments,
mythical creatures, people, precious stones, reading material, sports,
tools, vehicles, weapons, and weather. As in Experiment 1, 2,222
experimental items were randomly selected for use as targets, and
the rest were used as fillers. Nouns were presented with a determiner
(“the” or “a”/“an”; the most commonly used determiner was chosen
based on a set of native speakers’ intuitions) and verbs with “to” in
order to make it clear what part of speech was being used and to
capture any potential syntactic category effects.

Procedure

Each experimental item was presented for 1 s (in uppercase letters
in Experiment 1 and in lowercase letters, except for proper nouns,
which were capitalized, in Experiment 2) followed by a 1.4 s fix-
ation; thus, participants had 2.4 s to respond. Participants were asked
to press the r key when an experimental item occurred that they had
already seen. Critical repeats occurred on a subset of the 2,222 target
experimental items used in each experiment. In Experiment 1, each
target experimental item was seen twice by at least 56 and at most
109 participants (Mdn = 79; M = 78.9); in Experiment 2, each target
experimental item was seen twice by at least 49 and, at most, 118
participants (Mdn = 77; M = 77.7). Vigilance repeats (included to
make sure that participants were paying attention) occurred on a
separate subset of the experimental items and were chosen randomly
for each participant.

Experimental Item Norms

To evaluate our hypothesis, for each of our two critical predictors—
the number of synonyms and the number of meanings—we collected
(a) human judgments, and, for Experiment 1, (b) corpus-based
estimates. For Experiment 2, items often consisted of multiple words/
phrases (e.g., “bipolar disorder,” “Christmas Eve” or “high heels”),
which made accurate corpus estimates difficult to obtain.

To explore the relationship between the critical predictors and
some of the factors that have been argued or shown in the past to
affect experimental item memorability, as well as to compare our
hypothesis against some of the earlier proposals in the literature, we
collected a set of human and corpus norms for several additional
predictors.

Norms for the Two Critical Predictors

Human estimates for the number of synonyms and the number of
meanings for each experimental item were obtained in norming
experiments conducted using https://www.amazon.com’s Mechanical
Turk. For each set of critical materials (2,222 experimental items from
Experiment 1 and 2,222 experimental items from Experiment 2), two
experiments were conducted: one eliciting the number of synonyms
judgments, and one—the number of meanings judgments. The ma-
terials in each set were divided into nine subsets: eight subsets of 250
experimental items each and one subset of 222 experimental items.
Each subset was presented to a different group of 30 participants and
also included a set of 20 catch trials, as detailed below. Thus, across
the two sets of materials, 1,080 participants were tested (540 for the
number of synonyms experiment and 540 for the number of meanings
experiment).

In each experiment, participants were asked to answer two
questions about each experimental item: (a) whether the experimental
item was a real word of English (the 20 catch trials mentioned above
were pseudowords and were included to filter out participants who
responded randomly), and (b) the critical judgment. For the number
of synonyms experiments, participants were asked to identify how
many synonyms each real experimental item has by choosing from
among five options (zero synonyms, one synonym, two synonyms,
3-5 synonyms, or more than five synonyms). For the number of
meanings experiments, participants were asked to identify how many
meanings each real experimental item has by choosing from among
four options (one meaning, two meanings, 3—-5 meanings, more
than five meanings; note that an experimental item may have zero
synonyms but not zero meanings, hence only four options here).

Data from participants who provided ratings for more than
80% of pseudowords (suggesting they were not paying attention)
were removed when computing the critical judgment norms. For
Experiment 1, these exclusions left a total of 226 unique participants
for number of synonyms with a median of 23 ratings per experi-
mental item (after excluding experimental items with 10 or fewer
ratings, as elaborated in the following paragraph) and 250 unique
participants for the number of meanings with a median of 27 ratings
per experimental item for the number of meanings (after excluding
experimental items with 10 or fewer ratings). For Experiment 2,
these exclusions left a total of 223 unique participants for number of
synonyms with a median of 23 ratings per experimental item (after
excluding experimental items with 10 or fewer ratings) and 248
unique participants for the number of meanings with a median of 26
ratings per experimental item for the number of meanings (after
excluding experimental items with 10 or fewer ratings).

One hundred twelve of the 2,222 experimental items in
Experiment 1 and 52 of the 2,222 experimental items in Experiment
2 were identified as real words by 10 or fewer participants and were
excluded from the critical memorability analyses given that many
participants in the memory experiments would also be unlikely to
know these experimental items. Additionally, one experimental item
from Experiment 1 (“BOUDOIRS”) was not present in the initial
GloVe database used for this study (Version glove.6B.50d.txt) and
was therefore excluded from the analyses, leading to the exclusion
of a total of 113 experimental items from Experiment 1. For
Experiment 2, five experimental items were not available in the
Google n-gram database (“a relux suppressant,” “a tangello,”
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“Arnold Schwazenegger,” “Raphael (Raffaelo) Sanzio,” “Scarlett
Johanson”), mainly due to inadvertent spelling errors, and were
excluded, leading to the exclusion of a total of 57 experimental items
from Experiment 2. Thus, Experiment 1 contained 2,109 experi-
mental items for the critical memorability analyses, and Experiment
2 contained 2,165 experimental items for the critical memorability
analyses.

To derive a corpus-based estimate of the probability of an
experimental item given a meaning, we used the following: (a) GloVe
semantic word distinctiveness; and (b) number of synonyms assigned
to an experimental item in Wordnet (Sigman & Cecchi, 2002).
To estimate GloVe semantic distinctiveness, we obtained a GloVe
(Global Vectors for Word Representation; Pennington et al., 2014)
vector for each of the target experimental items (pretrained vectors
from the Common Crawl corpus, available at https://nlp.stanford.edu/
projects/glove/, Version glove.840B.300d.txt), and calculated the
mean cosine similarity between this vector and all other experimental
item vectors in the set (n = 2,109). This correlation reflects, on
average, how similar a given experimental item is to other experi-
mental items in terms of its co-occurrence characteristics (which have
been shown to serve as a useful proxy for word meanings; e.g.,
Pereira et al., 2016). Although this measure of semantic distinc-
tiveness was computed based on the experimental items used in the
experiment and not all English words, in pilot work we found that this
measure was highly correlated with a measure of distinctiveness
computed based on a larger set of experimental items. We also note
that this measure of semantic distinctiveness does not account for
homonymy because the GloVe representation provides a single
context-independent representation for each experimental item.

And to derive a corpus-based estimate of the probability of a
meaning given an experimental item, we used a combination of the
following two measures: (a) Subtlex contextual diversity (the unique
number of movie transcripts in which an experimental item appears;
experimental items that have more meanings typically appear in
more diverse settings); and (b) number of meanings listed for an
experimental item in Wordnet (Sigman & Cecchi, 2002).

Additional Norms

In addition to the norms for the critical predictors, for each
experimental item, we obtained norms for five attributes that have
been shown to affect word memorability in past work: concreteness,
imageability, familiarity, valence, and arousal. These norming
experiments were set up in a similar way to the ones for the critical
predictors and also conducted using https://www.amazon.com’s
Mechanical Turk. In particular, for each set of materials (2,222
experimental items from Experiment 1, and 2,222 experimental
items from Experiment 2), five experiments were conducted: one for
each attribute of interest. The materials in each set were divided into
nine subsets: eight subsets of 250 experimental items each, and one
subset of 222 experimental items. Each subset was presented to a
different group of 30 participants, and also included a set of 20 catch
trials, as detailed below. Thus, across the two sets of materials, 2,700
participants contributed data (540 for each of the five attributes).

In each experiment, participants were asked to rate each exper-
imental item on a scale of 1-5 (the 20 catch trials mentioned
above were chosen to serve as extremes: 10 on each side of the
scale; e.g., for imageability, experimental items like “POODLE”
and “TOMATO” served as high-imageability catch trials, and

experimental items like “ELUSIVE” and “RELATE” served as low-
imageability catch trials).

Data from participants who did not rate at least 8/10 of the high and
8/10 of the low catch trials and who assigned less than a 1-point
difference in the expected direction for the catch trials were removed
when computing the critical judgment norms. For Experiment 1, these
exclusions left a total of 1,218 unique participants with a median of 26
ratings per experimental item for concreteness (minimum: 25 ratings),
a median of 26 ratings per experimental item for imageability
(minimum: 23 ratings), a median of 28 ratings per experimental item
for familiarity (minimum: 24 ratings), a median of 28 ratings for
valence (minimum: 26 ratings), and a median of 22 ratings per
experimental item for arousal (minimum: 18 ratings). For Experiment
2, these exclusions left a total of 1,201 unique participants with a
median of 24 ratings per experimental item for concreteness (mini-
mum: 19 ratings), a median of 26 ratings per experimental item
for imageability (minimum: 24 ratings), a median of 27 ratings per
experimental item for familiarity (minimum: 22 ratings), a median
of 25 ratings for valence (minimum: 22 ratings), and a median of
23 ratings per experimental item for arousal (minimum: 21 ratings).
We note that although some of these norms are available in existing
databases (e.g., Brysbaert et al., 2014; Mohammad, 2018), we chose
to collect our own norms in order to obtain a unified set of norms for
all items in Experiments 1 and 2. (As expected, our collected norms
are strongly correlated with the norms in published databases for the
sets of overlapping experimental items.")

Finally, we obtained a corpus-based frequency measure: for
Experiment 1, we used the token log frequency of a word in the
Subtlex subtitles corpus (Brysbaert et al., 2012); and for Experiment
2, because items often consisted of multiple words/phrases, we used
the Google n-gram corpus (Year 2013) to calculate log frequencies
for each item (Michel et al., 2011). For completeness, we also
obtained the Google n-gram frequencies for Experiment 1.

Modeling
Cross-Validated Model Performance

For an unbiased evaluation of how predictive certain features
(e.g., number of synonyms, number of meanings) are of memo-
rability recognition accuracy, we fit a linear regression predicting
per experimental item accuracy as a function of the feature norms of
interest. The procedure is cross-validated across participants and
experimental items: we fit the linear regression model on half of the
participants using half of the experimental items (Experiment 1:
1,055 experimental items for train set; Experiment 2: 1,083 for train
set, unless otherwise stated—e.g., in analyses on subsets of the data,
these numbers are lower) and test the model on the other half of the
participants (Experiment 1: 1,054 experimental items for test set;

"For concreteness, the number of overlapping experimental items
between our sets and the Brysbaert et al. (2014) database was 1,394 for
Experiment 1 and 428 for Experiment 2, and the norms were correlated at r =
0.94 and 0.93 for Experiments 1 and 2, respectively. For valence, the number
of overlapping experimental items between our sets and the (Mohammad,
2018) database was 1,226 for Experiment 1 and 383 words for Experiment 2,
and the norms were correlated at Pearson 7 = 0.86 and 0.89 for Experiments 1
and 2, respectively. Last, for arousal, the number of overlapping experi-
mental items between our sets and the (Mohammad, 2018) database was the
same, and the norms were correlated at r =0.71 and r = 0.70 for Experiments
1 and 2, respectively.
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Experiment 2: 1,082 experimental items for test set, unless other-
wise stated).

We demeaned each column of the regressor matrix (i.e., each
feature), but we did not normalize the columns to have a unit norm.
Similarly, we demeaned the target vector (i.e., memorability rec-
ognition accuracy). The demeaning was performed on the train set,
and the same transformation was independently applied on the test
set. This ensured independence (no data leakage) between the train
and test sets. We performed this procedure 1,000 times and reported
the median Spearman correlation between the predicted recognition
accuracy and the actual recognition accuracy.

Forward-Backward Feature Selection

For an assumption-neutral evaluation of which features emerge in
the best possible linear model of memorability, we implemented a
forward-backward feature selection method. The feature selection
method allows for features to be included/excluded in a linear model
based on the p values associated with a given feature. The forward
step consists of inclusion of the feature associated with the lowest
(i.e., most significant) p value (if less than the inclusion threshold of
.01). The backward step consists of exclusion of the feature asso-
ciated with the greatest (i.e., least significant) p value (if greater than
the exclusion threshold of .05).

Besides the feature selection step, the modeling procedure was
identical to the remaining model evaluations (as described in the
Cross-Validated Model Performance section): we partitioned the
data into a train/test set of independent participants and experimental
items, demeaned the regressors and targets, and ran the feature
selection procedure on the training data, obtaining a set of features
for optimal fit to the training data. Next, we tested the model using
these features on the test set and reported the median Spearman
correlation between predicted accuracy and actual accuracy.

Transparency and Openness

The memorability data for Experiments 1 and 2 are publicly
available as csv files in the following repository: https://github.com/
gretatuckute/memorable_words/ (Tuckute et al., 2024). Similarly,
the repository contains the code to reproduce the figures/tables in
the article. The study was not preregistered. The study consists of
two independent experiments (Experiments 1 and 2), and the main
findings were replicated.

Results

How Memorable Are Word and Multiword Phrases
(Experimental Items)?

In Experiment 1, we measured the memorability of 2,222 exper-
imental items sampled from the Subtlex corpus (Brysbaert & New,
2009), which consists of movie transcripts. The experimental items
sampled from this corpus are intended to represent a typical range of
words that one might encounter in everyday life, including a mix of
low-frequency and high-frequency words. Overall memory perfor-
mance was high and similar to what has been previously reported
for images (Isola, Xiao, et al., 2011). The median hit rate over
experimental items (computed as the number of correct repeat
detections divided by the total number of critical repeat trials) was
0.69, the median false alarm rate (the number of incorrect repeat

detections divided by the total number of nonrepeat trials) was
0.09, and the median accuracy (the number of correct repeat
detections and correct repeat nondetections divided by the total
number of trials) was 0.80 (Figure 3A(iii)).

Although accuracy was high, some experimental items were
consistently better remembered than others (split-half Spearman
correlation for accuracy across participants: 0.58, 95% confidence
interval, CI [0.56, 0.60] by nonparametric bootstrap). This con-
sistency indicates that there exists a reliable signal of experimental
item-intrinsic memorability, which varies substantially between
experimental items (Figure 3A shows the most and least memorable
experimental items).

To evaluate the generalizability of the results from Experiment 1,
in Experiment 2, we measured the memorability of a new set of
2,222 experimental items, which were hand-selected so as to span a
wide range of semantic categories. Despite the fact that Experiment
2 used a very different lexicon from Experiment 1 and a new set of
participants, the results were strikingly similar. The median hit rate
was 0.69, the median false alarm rate was 0.09, and the median
accuracy was 0.80. As in Experiment 1, some experimental items
were consistently better remembered than others (split-half Spearman
correlation for accuracy across participants: 0.65, 95% CI[0.63, 0.67]
by nonparametric bootstrap).

To allow for an across-experiment comparison for the same
materials, 48 experimental items overlapped between the sets of
target experimental items in Experiments 1 and 2. The accuracies for
these 48 experimental items were strongly correlated between the
two experiments (r = 0.77, p << .0001; Supplemental Figure 1).
Similarly, the correlations for the human-derived norms (number of
synonyms, number of meanings, concreteness, imageability, famil-
iarity, valence, arousal) between both experiments were very high
(in the range of r = 0.85-0.98, p << .0001; Supplemental Table 1).

How Well Does the Ideal Observer Model Explain
Experimental Item Recognition Performance?

To test the predictions of the proposal put forward here, we
examined the relationship between experimental item memorability
and the number of synonyms and number of meanings. We report
the results based on the human-derived number of synonyms/
meanings in the main text because corpus-based measures were not
possible to obtain for the materials in Experiment 2. It is important to
note that the human-derived norms were highly reliable: The split-half
Spearman correlation for the rating values across participants was
0.86,95% CI[0.81, 0.89] for synonyms and 0.74, 95% C1[0.69, 0.77]
for meanings for Experiment 1, and 0.92, 95% CI [0.89, 0.93]
for synonyms and 0.78, 95% CI [0.75, 0.81] for meanings for
Experiment 2. (In Experiment 1, where we were able to obtain corpus-
based measures in addition to the human ratings, we found that the
corpus-based measures and human ratings are correlated: the number
of synonym norms is correlated at » = 0.35, and the number of
meaning norms is correlated at r = 0.54. For completeness, we report
the results for Experiment 1 based on the corpus-derived measures in
Supplemental Figure 2 and Supplemental Table 2.)

Each of the two critical measures (number of synonyms, number
of meanings) was predictive of memory recognition accuracy in
both Experiments 1 and 2, as summarized in Figure 3B and Table 1.
We fit a linear regression predicting per experimental item accuracy
as a function of both the number of synonyms and the number of
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Figure 3
Critical Results for Experiments 1 and 2

(A) Memorability of experimental items (words/multi-word phrases) | |(B) Ideal observer model performance
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Note. (A)Memory performance (median recognition accuracy) across all experimental items in Experiment 1 (n = 2,109 experimental items) and Experiment
2 (n = 2,165 experimental items) is shown in (iii). Error bars are 95% confidence interval (CI) of the median. The most memorable experimental items for
Experiments 1 and 2 are shown in (i) and (iv), respectively; and the least memorable experimental items—in (ii) and (v). (B) Model performance using the
number of synonyms, number of meanings, or both (the ideal observer model) as predictors of memory performance (see also Table 1). Median Spearman rank
correlation between predicted and observed recognition accuracy for Experiments 1 and 2 is shown in (i) and (ii), respectively. Correlations were computed
across 1,000 cross-validation folds using data from a set of nonoverlapping participants and experimental items for train/test splits. Error bars are 95% CI across
cross-validation splits. The horizontal gray lines denote the interparticipant reliability of the data, as defined by the split-half Spearman correlation for accuracy
across participants, which measures the reliability of the data and hence provides a reasonable upper bound on the correlation obtainable from external
predictors. (C) The correlations between the critical predictors (human-derived number of synonyms and number of meanings norms, as described in the
Experimental Item Norms section), and between the critical predictors and other predictors are shown in (i). The set of noncritical predictors includes five human
judgment norms (concreteness, imageability, familiarity, valence, and arousal) and some corpus-based norms. For Experiment 1, we included four corpus-based
norms: Google n-gram frequency (the overall frequency of an experimental item in the Google n-gram database in 2013), Subtlex frequency (the overall
frequency of an experimental item in the Subtlex movies transcript), Subtlex contextual diversity (CD; a measure of the number of distinct movie transcripts in
which an experimental item appears in the Subtlex corpus), and GloVe distinctiveness (a measure of semantic distinctiveness derived from corpus-based GloVe
co-occurrence statistics); for Experiment 2, we included Google n-gram frequency. Percent increase in model performance associated with each noncritical
predictor is shown in (ii) (see Supplemental Table 7 for the statistical evaluation). Expt = Experiment; CD = contextual diversity. See the online article for the
color version of this figure.

meanings. To avoid overfitting, we learned the model coefficients [0.44, 0.52] compared to the interparticipant consistency of 0.58 (the
using half of the participants and half of the experimental items and split-half correlation across participants) for Experiment 1, and 0.59,
tested the model on the nonoverlapping portion of the data. Iterating 95% CI [0.55, 0.63] compared to the interparticipant consistency of
this procedure 1,000 times, the median Spearman correlation between 0.65 for Experiment 2 (Table 1).

the memorability accuracies and model predictions using both the Thus, a simple model of experimental item memorability, based

number of synonyms and the number of meanings was 0.48, 95% CI on just two rationally motivated factors—number of synonyms and
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Table 1
Ideal Observer Model Performance

No. of synonyms,

No. of meanings,

No. of synonyms and no. of

Experiment 95% CI 95% CI meanings, 95% CI
Expt 1 0.48 [0.44, 0.52] 0.24 [0.19, 0.29] 0.48 [0.44, 0.52]
Expt 2 0.58 [0.55, 0.62] 0.41 [0.37, 0.45] 0.59 [0.55, 0.63]

Note. Rows: experiments (1, 2); columns: predictors (number of synonyms, number of meanings, both; based on human
norms). Values are the median Spearman correlation between memory performance (recognition accuracy) and model
predictions across 1,000 cross-validation splits using data from a set of nonoverlapping participants and experimental items
for train/test splits. CI = confidence interval; Expt = experiment.

number of meanings—captures a large portion of the variance in
experimental item memorability (cross-validated Spearman corre-
lation of 0.48 and 0.59 in Experiments 1 and 2, compared to the
interparticipant consistency of 0.58 and 0.65 in Experiments 1 and
2). In a control analysis, we showed that in sharp contrast with our
critical predictors, form-based predictors based on orthographic and
phonological features (Marian et al., 2012) explain almost no
variance in experimental item memorability (Supplemental Figure 3
and Supplemental Table 3; cf. Malmberg et al., 2002).

Next, we investigated whether one of the critical predictors
(number of synonyms or number of meanings) was a stronger
predictor of memorability. We evaluated this in two ways. First, as
shown in Figure 3B, we evaluated how much variance a model with
only one of the critical predictors explains on the held-out data
across 1,000 splits (Table 1). We observed that the model with only
number of synonyms as a predictor performs on par with the model
with both predictors (0.48 with just number of synonyms vs. 0.48
with both predictors for Experiment 1, and 0.58 with just number of
synonyms vs. 0.59 with both predictors for Experiment 2). Thus,
the explained variance does not seem to benefit substantially from
adding number of meanings as a predictor.

And second, we performed a statistical comparison of how much
benefit there is of adding each of the critical predictors to the full
model using a likelihood ratio test comparing the full model to a
model without the critical predictor (Supplemental Table 4). For
Experiment 1, in line with the results based on the cross-validated
model performance (Table 1 and Figure 3B), we observed that
adding number of synonyms as an additional predictor to the
number of meanings model provides a large improvement in model
fit (F = 651.24, p << .0001). Adding number of meanings as an
additional predictor to the number of synonyms model yields some
model fit improvement (F = 20.37, p << .0001), albeit much smaller
and possibly driven by the large number of observations (number of
meanings contributed less to the cross-validated analyses reported in
Table 1). The trends were similar for Experiment 2: adding number
of synonyms as an additional predictor to the number of meanings
model provides a large improvement in model fit (F = 1,073.26,
p << .0001), compared to a significant but much smaller improve-
ment when adding number of meanings as an additional predictor
to the number of synonyms model (F = 11.88, p < .001). Finally,
because the number of synonyms and the degree of lexical ambiguity
may vary between syntactic categories, following a reviewer’s
suggestion, we included part of speech? as an additional predictor in
the baseline model: doing so provided only a modest improvement
in model fit (Experiment 1: F = 19.87, Experiment 2: F' = 39.33, both
p << .0001).

Thus, both methods for comparing the contributions of the two
critical predictors yield a similar answer: the number of synonyms is
a stronger contributor to memorability compared to the number of
meanings.

Do Additional Factors Contribute to Experimental
Item Memorability?

To explore the effects on experimental item memorability of the
factors that have been argued in the past to be important, as well as to
compare our hypothesis against some of the earlier proposals in the
literature, we performed several analyses.

First, we examined the relationship (via Pearson correlations)
between each of our critical predictors and each of the additional
predictors (Figure 3C). The latter set included five predictors obtained
from human ratings (concreteness, imageability, familiarity, valence,
and arousal) and corpus-based norms (for Experiment 1, frequency
and contextual diversity [CD] measures [from Subtlex and Google n-
gram] and GloVe distinctiveness; for Experiment 2, the Google n-
gram frequency). As can be seen in Figure 3C(i), and focusing on
relationships that were consistent between the two experiments, the
number of synonyms showed a strong negative correlation with
concreteness (= —0.55 in Experiment 1 and = —0.76 in Experiment
2): experimental items that were rated as more concrete were rated
as having fewer synonyms. In addition, number of synonyms showed
a moderate negative correlation with imageability (r = —0.31 in
Experiment 1 and r = —0.47 in Experiment 2): experimental items
that were rated as more imageable were rated as having fewer sy-
nonyms. (Concreteness and imageability were strongly correlated for
the materials in both Experiment 1 [r = 0.85] and Experiment 2 [r =
0.80]; Supplemental Figure 4.) Further, number of synonyms was also
moderately correlated with familiarity (» = 0.38 in Experiment 1 and
r=0.42 in Experiment 2). Finally, number of synonyms showed weak
positive correlations with frequency (» = 0.10 for Subtlex frequency
and r = 0.16 for Google n-gram frequency in Experiment 1 and r =
0.28 in Experiment 2) and arousal (» = 0.21 in Experiment 1 and r =
0.24 in Experiment 2) and a weak negative correlation with valence
(r = —0.17 in Experiment 1 and r = —0.19 in Experiment 2):
experimental items that were more frequent and rated as more arousing
and less positively charged were rated as having fewer synonyms.

2 For Experiment 1, the part of speech (POS) composition of the materials
was: adjectives: 121 items, nouns: 1,836 items, verbs: 56, adverbs: 56, and
other: 17 (obtained using the NLTK Python library; Bird & Loper, 2004). For
Experiment 2, the POS composition of the materials was: adjectives: 304
items, nouns: 1,265 items, and verbs: 596 (POS estimates were manually
assigned during the material construction procedure).


https://doi.org/10.1037/xge0001742.supp
https://doi.org/10.1037/xge0001742.supp
https://doi.org/10.1037/xge0001742.supp
https://doi.org/10.1037/xge0001742.supp

publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ed broadly.

)
2
=
=]

ded solely for the persc

»
2
o
E=!
»
=
=

INTRINSICALLY MEMORABLE WORDS 11

The number of meanings was moderately correlated with fre-
quency (r = 0.32 for Subtlex frequency and r = 0.30 for Google
n-gram frequency in Experiment 1 and r = 0.38 in Experiment 2):
more frequent experimental items were rated as having more
meanings, as expected given past work (e.g., Fenk-Oczlon & Fenk,
2010; Piantadosi et al., 2012). Similar to the number of synonyms,
the number of meanings was also moderately correlated with
familiarity (r = 0.28 in Experiment 1, and » = 0.32 in Experiment
2). (See Supplemental Figure 4 for all predictor correlations.)

Next, we asked whether any of the additional predictors explained
any variance above and beyond the two critical predictors. For
Experiment 1, there were nine additional predictors (concreteness,
imageability, familiarity, valence, arousal, Google n-gram frequency,
Subtlex frequency, Subtlex contextual diversity, and GloVe distinc-
tiveness, as evidenced in Figure 3C). For Experiment 2, there were six
additional predictors (concreteness, imageability, familiarity, valence,
arousal, and Google n-gram frequency). The correlation of each
predictor with memory recognition accuracy is shown in Figure 4. To
formally evaluate the contribution of each predictor, we compared
the ideal observer baseline model that only includes the two critical
predictors (human-derived number of synonyms and number of
meanings) to a set of models, each including one additional predictor.
Similar to the Results; How Well Does the Ideal Observer Model
Explain Experimental Item Recognition Performance? section, we
investigated both the cross-validated model performance as well as
performing the likelihood ratio test by comparing the ideal observer
model against a model with the additional predictor. The percent
increase in cross-validated model performance by adding each of the
additional predictors is shown in Figure 3C(ii) and Supplemental
Tables 5 and 6.

For Experiment 1, the largest increase in explained variance from
additional predictors stems from Google n-gram frequency (10.24%
increase with a model performance of 0.53 95% CI [0.49, 0.57]),
followed by imageability (9.30% increase with a model perfor-
mance of 0.53 95% C1[0.49, 0.56]). Similarly, for Experiment 2, the
largest increase in explained variance from additional predictors
stems from Google n-gram frequency (6.07% increase with model
performance of 0.62 95% CI [0.59, 0.66]), followed by imageability
(4.07% increase with model performance of 0.61 95% CI [0.58,
0.65]). To statistically evaluate how much benefit additional pre-
dictors have, we used likelihood ratio tests (Supplemental Table 7).
These tests mirror the patterns from the cross-validated model
performance analysis (Figure 3C and Supplemental Tables 5 and 6).
For both experiments, adding Google n-gram frequency to the ideal
observer baseline model results in the largest improvement in model
fit (Experiment 1: F = 224.81, p << .0001; Experiment 2: F =
142.06, p << .0001) followed by imageability (Experiment 1: F =
210.18, p << .0001; Experiment 2: F = 101.58, p << .0001). The
Google n-gram frequency feature, reflecting an experimental item’s
occurrence in a vast number of books, is positively correlated with
the number of synonyms (Pearson r = 0.16 in Experiment 1 and
r = 0.28 for Experiment 2) as well as the meanings (r = 0.30 in
Experiment 1 and r = 0.38 for Experiment 2). Yet, the fact that it
explains additional variance beyond these two critical predictors
suggests that an experimental item’s general frequency of use—
regardless of its specific meaning—is another significant factor in
explaining its memorability.

Given that we observed that frequency was a strong additional
predictor, we performed a supplementary analysis to investigate

whether the ideal observer model could still predict memorability
when experimental items were similar in frequency. To do so, we
partitioned the experimental items into low-, medium-, and high-
frequency subsets and found that the ideal observer model still
explained most of the explainable variance within these partitions.
Hence, lexical frequency cannot account for the high performance of
the ideal observer model (Supplemental Figure 5 and Supplemental
Tables 8 and 9).

Finally, we compared our model’s performance to two previous
proposals, both within the framework of Bayesian optimal inference:
those of Steyvers and Malmberg (2003) and Griffiths et al. (2007). To
do so, we used the data from Experiment 1. We found that compared
to our baseline model (model performance: 0.48, 95% CI[0.44, 0.5]),
a model that only includes the corpus-derived contextual diversity
predictor, as proposed by Steyvers and Malmberg (2003), explains
substantially less variance (0.23, 95% CI [0.18, 0.28]; Supplemental
Figure 6A and Supplemental Table 10). Furthermore, including the
corpus-derived CD measure as an additional predictor only shows
a small increase in performance above the baseline model (0.50, 95%
CI [0.46, 0.53]; Supplemental Table 6). So despite the fact that the
contextual diversity measure is moderately correlated with both of
our critical predictors (number of meanings: r = 0.35; number of
synonyms: r = 0.23; Figure 3C(i) and Supplemental Figure 3), this
measure alone only explains a fraction of the variance. Griffiths et al.
(2007) demonstrated that the number of topics a given word is asso-
ciated with (what they termed “topic variability”) is a better predictor
of human recognition performance than contextual diversity. We
replicated this finding here using the topic variability scores released
by Griffiths et al. (2007; available for a subset of our experimental
materials; Supplemental Figure 6B and Supplemental Table 11).
However, the topic variability model was not on par with the ideal
observer baseline model (Supplemental Figure 6B and Supplemental
Table 11; independent two-sided # test between Spearman correlation
values across 1,000 cross-validation splits: p << .0001, ¢ = 61.57,
Cohen’s d = 2.75). In summary, the two-factor model based on the
number of synonyms and the number of meanings provides a
quantitatively better account of recognition memory than two related
proposals within the Bayesian framework. As noted in the Discussion
section, the advantage of the ideal observer model likely stems from
the inclusion of the number of synonyms predictor.

What Is the Best Possible Model of Memorability?

Finally, we tested whether our critical predictors emerge in the
best possible linear model of memorability in an assumption-neutral
manner. To do so, we performed a forward—backward feature selec-
tion analysis using all the features visualized in Supplemental
Figure 4 (same set of features as in Figure 4 with the addition of
corpus-based synonym and meaning norms for Experiment 1). This
approach allows features to be included/excluded in the memorability
model based on the p values associated with a given feature with
no top—down assumptions (see the Forward—Backward Feature
Selection section). We partitioned the data into a train/test set of
independent participants and experimental items (identical to Results;
How Well Does the Ideal Observer Model Explain Experimental
Item Recognition Performance? and Results; Do Additional Factors
Contribute to Experimental Item Memorability? sections) and ran the
feature selection procedure on the training data, obtaining a set of
features for optimal fit to the training data (n = 1,000 cross-validation
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Figure 4
Correlation of Each Predictor With Recognition Accuracy
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On each plot, the x-axis shows the z-scored predictor, and the y-axis shows recognition accuracy. The red line is the line of best fit. The Pearson

correlation is reported in the top right of each plot. (A) Critical predictors (human-derived number of synonyms and number of meanings). (B) Additional
predictors (see Figure 3C for more information on the relationship between the critical and the additional predictors). Expt = Experiment; CD = contextual

diversity. See the online article for the color version of this figure.

folds). Next, we tested the model using these features on the test set
and reported the median Spearman correlation between memorability
accuracy and predicted memorability.

For Experiment 1, the feature pool consisted of human- and corpus-
based meaning and synonym norms as well as the five norms obtained
from human ratings (concreteness, imageability, familiarity, valence,
and arousal), corpus-based frequency (from Subtlex and Google),
and CD measures (from Subtlex) and GloVe semantic distinc-
tiveness, that is, a pool of 13 predictors in total. We obtained a
maximum explained variance of 0.59, 95% CI [0.55, 0.62] (the
subjectwise noise ceiling was 0.58 for Experiment 1). The most

frequently occurring models across 1,000 cross-validation splits
included the following six predictors (these features were selected
276/1,000 times): # Synonyms (human), Google n-gram frequency,
Imageability, Familiarity, # Meanings (Wordnet), Subtlex frequency.

The second most frequently selected feature set was (these fea-
tures were selected 80/1,000 times): # Synonyms (human), Google
n-gram frequency, Imageability, Familiarity, # Meanings (Wordnet),
Subtlex frequency, Subtlex CD.

Furthermore, across the 1,000 models, # Synonyms (human or
corpus-based) was selected every time (in fact, it was selected as
the first predictor every time); # Meanings (human or corpus-based)
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was selected 217 times (see Supplemental Table 12 for predictor
inclusion numbers for all predictors).

For Experiment 2, the feature pool consisted of human synonym
and meaning norms as well as the five norms obtained from human
ratings and frequency (from Google n-gram), that is, a pool of eight
predictors in total. We obtained a maximum explained variance of
0.63, 95% CI [0.60 0.67] (the subjectwise noise ceiling was 0.65
for Experiment 2). The most frequently occurring models included
the following three predictors (these features were selected 515/1,000
times): # Synonyms (human), Google n-gram frequency, and
Imageability.

The second most frequently selected feature set was (these fea-
tures were selected 192/1,000 times): # Synonyms (human), Google
n-gram frequency, Imageability, and Arousal.

As in Experiment 1, across the 1,000 models, # Synonyms (human)
was selected every time (and it was selected as the first predictor every
time); # Meanings (human) was selected nine times.

Thus, by using an assumption-neutral, cross-validated approach
to estimate which features contribute most to memorability, we find
that, across the two experiments, our two critical predictors—number
of synonyms and number of meanings—along with frequency,
imageability, and familiarity, predict the data up to the subjectwise
noise ceiling. Mirroring the results in the Results; How Well Does the
Ideal Observer Model Explain Experimental Item Recognition
Performance? section, the number of synonyms predictor is a
stronger predictor of experimental item memorability than the
number of meanings predictor (in particular, for Experiment 2).

Discussion

We investigated experimental item memorability (word and
multiword phrases) across two large-scale behavioral recognition-
memory experiments (n = 672 and 631 participants in Experiments
1 and 2, respectively; n = 2,222 target experimental items in each
experiment; n = 3,780 participants used in the norming experi-
ments). The contributions of the current work are fourfold. First,
across two large sets of experimental items, we found that mem-
orability is largely an intrinsic property of experimental items: some
experimental items are consistently remembered better than others
across participants. Second and critically, building on past work
(e.g., Griffiths et al., 2007; Steyvers & Malmberg, 2003), we
evaluated and provided support for a novel proposal for what makes
experimental items memorable—the ideal observer model of
experimental item memorability—whereby memorable experimen-
tal items have unique associations with their meanings. Third, we
systematically evaluated several additional factors that have been
argued to affect word memorability in past work and found some
support for frequency, imageability, familiarity, and arousal. We
elaborate on these findings below. In addition, by making the
memorability data and all the behavioral norming data and corpus
measures publicly available, we hope to help move the field of
word memory research forward, allowing for streamlined testing of
novel proposals.

Some Experimental Items Are Intrinsically Memorable
and Others—Forgettable

In both experiments, we found that memorability of experimental
items is consistent across participants. This result suggests that

experimental item memorability depends, in large part, on stimulus
properties and is a critical prerequisite for our ability to ask our
critical research question: that is, what makes words memorable?
This result also mirrors the findings from the image memorability
literature (Bainbridge, 2022; Bainbridge et al., 2013; Borkin et al.,
2013; Bylinskii et al., 2015; Isola et al., 2014; Isola, Parikh, et al.,
2011; Isola, Xiao, et al., 2011).

The intrinsic nature of word memorability is consistent with item-
noise models of episodic memory (e.g., McClelland & Chappell,
1998; Shiffrin & Steyvers, 1997), in which items are encoded by
their intrinsic properties (in our model, as discussed in the Memorable
Experimental Items Have Few Synonyms and Few Meanings section,
the features have to do with the word-to-meaning relationship).
Conversely, our findings are at odds with context-noise models
(Dennis & Humphreys, 2001), which assume that only context
variability (i.e., the diversity of contexts in which a test item app-
eared), not item-level information, affects recognition memory.

The consistency across participants in which experimental items
they found memorable is interesting given that individuals vary
substantially in terms of the amount and kind of linguistic input they
get across their lifetimes. Future work may investigate interindi-
vidual differences in recognition memory for experimental items.
For example, are participants with more linguistic experience (as
indexed, e.g., by larger vocabularies) better at experimental item
recognition memory? What other aspects of individual experiences/
cognitive abilities affect experimental item recognition perfor-
mance? And does experimental item recognition memory correlate
across individuals with recognition memory for images? In other
words, do experimental item and image memorability both depend
on the properties of abstract concept representations, or the par-
ticular interface between those representations and verbal/visual-
image representations?

Memorable Experimental Items Have Few Synonyms
and Few Meanings

In this work, we explored whether experimental items are encoded
in memory by their meanings. By formulating an ideal observer
model of word memorability, we hypothesized that a memorable
experimental item selects a particular meaning in semantic memory.
We indeed found that memorable experimental items are the ones
with few synonyms and few meanings, with the number of synonyms
being a more important predictor of memorability.

Prior work on word recognition memory has focused on factors
that relate to one of our two critical predictors: the number of word
meanings. In particular, many researchers have investigated how
the number of different contexts in which a word occurs—which
should generally be higher for words with many meanings—affects
memory performance (Aue et al., 2018; Dennis & Humphreys,
2001; Jones et al., 2017; Shiffrin & Steyvers, 1997; Steyvers &
Malmberg, 2003). Steyvers and Malmberg (2003) operationalized
contextual diversity as the number of different texts (in a large
language corpus) in which a given word appears. They found that
words that occur in fewer contexts (distinct text documents) were
better recognized than words that occur in many contexts. Of course,
words that occur in different texts may still be used in similar
semantic contexts. As a result, Griffiths et al. (2007) improved on
Steyvers and Mamberg’s idea by suggesting that word memorability
should depend on the number of different topics a given word is
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associated with—what they call topic variability. This measure may
therefore be more likely to capture the different meanings or distinct
senses of a word. In our data, we find that both contextual diversity
(Steyvers & Malmberg, 2003) and topic variability (Griffiths et al.,
2007) affect word recognition performance, with topic variability
showing better performance.’

Critically, however, our ideal observer model, which includes—in
addition to the number of meanings predictor (one experimental item
associated with many meanings)—the number of synonyms predictor
(many experimental items associated with one meaning), explains
substantially more variance than even the better performing topic
variability predictor. In follow-up analyses, we investigated why
the number of synonyms predictor was superior to the number of
meanings predictor. First, the variance of the number of meaning
norms was lower than for the number of synonym norms in both
experiments.* In other words, because the range of number of syno-
nyms across experimental items was greater than the range of number
of meanings, the number of meanings predictor was necessarily less
powerful in distinguishing among items. Second, we quantified the
reliability of the synonym and meaning norms, and although both were
highly reliable (see the How Well Does the Ideal Observer Model
Explain Experimental Item Recognition Performance? section), the
number of synonym norms was more reliable than the number of
meaning norms. Thus, the number of synonyms predictor was likely a
more important predictor of experimental item memorability because
our materials varied more along this dimension, and the number-of-
synonym estimates were more reliable.

It is worth noting that the number of synonyms has also been
shown to affect lexical access (e.g., in lexical decision and naming
tasks): response latencies are slower for words with many synonyms
than for words with fewer synonyms (Hino et al., 2002). These
findings suggest that a one-to-one mapping between an experi-
mental item form and a meaning not only leads to more robust
memory traces, as shown here, but also facilitates retrieval of
experimental items from memory.

Finally, our finding that verbal memorability strongly depends on
the relationship between the experimental items and their meanings
mirrors findings from the literature on image memorability, where
conceptual features, in addition to perceptual ones, have been shown
to drive recognition of images (Huebner & Gegenfurtner, 2012;
Konkle et al., 2010; Lin et al., 2019).

Additional Factors That Affect Experimental Item
Memorability

We investigated which features emerge in the best possible linear
model of memorability in an assumption-neutral manner. We per-
formed a forward-backward feature selection that included our
critical predictors (number of synonyms and number of meanings)
and other predictors that have been shown to affect word memora-
bility in prior work. The patterns were similar for both experiments:
the number of synonyms emerged as the strongest predictor in both.
The number of synonyms was followed by experimental item fre-
quency, in agreement with prior work demonstrating that lower
frequency experimental items are easier to recognize (e.g., Brown &
Lewis, 1981; Gorman, 1961; Kinsbourne & George, 1974; Schulman,
1967). The next predictor that was shared between experiments was
imageability, also in line with prior work (e.g., Gorman, 1961; Klaver
et al., 2005; Paivio, 1969; Rubin & Friendly, 1986; Walker &

Hulme, 1999). For Experiment 2, the most frequently selected feature
set for the best possible linear model of memorability consisted of these
three features (number of synonyms, frequency, and imageability).
For Experiment 1, the best feature set additionally included human
estimates of the number of meanings, familiarity, a corpus-based
measure of the number of meanings, and contextual diversity.

Implications of Understanding Experimental Item
Memorability

Why might one want to know which experimental items are
memorable? A lot of what we learn about the world we learn through
language from other humans rather than through our direct expe-
rience. Language is also used to build interpersonal relationships,
maintain international political order, and bring about social change.
Formulating messages in a way that powerfully and precisely ac-
tivates the relevant conceptual structures in other people’s minds is
therefore of critical importance at both personal and societal levels,
including in the education domain. Of course, the memories we
retain are at the conceptual level, but word choices can help optimize
the initial semantic encoding. As a result, understanding which
words lead to longer lasting traces in memory can enable more
precise and effective information sharing.

Limitations and Future Directions

The underlying mechanisms of how different features affect word
memorability are yet unclear. In future work, these features can be
manipulated in a targeted manner to investigate and understand their
precise effects on verbal memorability in more naturalistic settings.
Moreover, of course, most linguistic messages do not consist of single,
isolated words. A critical future direction will be to extend the current
account to sentences. Understanding how well the memorability of
individual words explains the memorability of longer linguistic strings
can illuminate fundamental aspects of language processing and
complex meaning construction in the mind and brain.

We have also introduced data and tools that allow for formulating
predictions about the memorability of newly encountered words.
Based on the word memorability data set presented here, a simple
linear model can be used to predict the memorability of any English
word. Additionally, because the critical predictors (number of sy-
nonyms and number of meanings) can be automatically estimated
from text corpora using the ever-improving tools from Natural
Language Processing, the simple Bayesian model presented here
can be used to make predictions about any word in any language
where large corpora are available.

3 Interestingly, the better performance of the topic variability predictor does
not appear to be due to it being a better estimate of the number of meanings:
contextual diversity and topic variability correlate similarly strongly with our
human-based norms for the number of meanings (r = 0.35 and r = 0.32,
respectively). Instead, the topic variability measure appears to show a stronger
correlation with our number of synonyms estimate (r = 0.52; cf. 0.25 for the
correlation between contextual diversity and the number of synonyms mea-
sure). Note that these correlation values were obtained using a subset of the
words (n = 1,366) for which topic variability norms were available.

“ For Experiment 1, the average number of synonyms was 1.71 with a
standard deviation of 1.01, whereas the average number of meanings was
1.42 with a standard deviation of 0.33. For Experiment 2, the average number
of synonyms was 1.46 with a standard deviation of 1.19, whereas the average
number of meanings was 1.35 with a standard deviation of 0.32.
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Conclusion

In this article, we have offered a simple account, based on rational
analysis, as to what makes words and multiword phrases memo-
rable. Our model posits that because words are encoded in memory
by their meanings, words that uniquely pick out a particular meaning
in semantic memory (i.e., unambiguous words with no synonyms)
should be the memorable ones. We evaluated this idea across two
large-scale experiments. The scale of our study makes the results
more likely to generalize to other words and other participants.
Thus, building on some classic findings, this work lays a theoretical
and empirical foundation for future work on verbal memorability.

Constraints on Generality
Ecological Validity and Effects of Context

The present study investigates the memorability of words in
isolation. We acknowledge the importance of context effects on
memorability, as well as the learning and processing of words. The
experimental paradigm is not designed to investigate either ordering
effects (words are presented as randomly ordered lists) or effects of
natural linguistic context. However, we find a high intrinsic mem-
orability of words: some words are consistently remembered better
than others across participants, even when presented in isolation, out
of context. Moreover, this recognition paradigm has been shown to
be highly robust and—at least for images—memorability estimates
from the recognition task match more traditional long-term memory
paradigm with a separate study and test phase (Goetschalckx et al.,
2018), to different retention intervals (Goetschalckx et al., 2018;
Isola et al., 2014), and to incidental memory scores where a memory
test is administered as a surprise (Goetschalckx et al., 2019). Thus,
we believe that studying memory using words in isolation is still
informative about human cognition, although the limitations of this
particular approach should of course be taken into account given the
importance of context for word processing.

Extension to Languages Other Than English

The predictions derived from the present study can be applied and
tested in other languages given the availability of norms for the
number of synonyms and meanings. We note that languages vary in
the extent to which synonymy and ambiguity exist and in how much
contextual information is required to determine a word’s meaning
(e.g., C. J. C. Lin & Ahrens, 2010); this variability may affect word
memory/recognition across languages.
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