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1 Introduction

A principal obsenationin the studyof languageacquisi-
tion is that peopleexposedto a languageaschildrenare
morelikely to achieve flueng in thatlanguagehanthose
first exposedto it asadults,giving riseto the popularno-
tion of acritical periodfor languagdearning(Lennebeg,
1967;Long, 1990). This is perhapssurprisingsincechil-
drenhave beenfoundto beinferior to adultsin mosttests
of othercognitive abilities.

A variety of explanationshave beenput forth to ac-
countfor the benefitof early languagedearning. Possi-
bly themostprevalentview is thatchildrenpossess spe-
cific “languageacquisitiondevice” thatis programmati-
cally deactvatedprior to or during adolescenc¢Chom-
sky, 1965;McNeill, 1970). Importantto this view is that
knowledgeor processesecessaryor effective language
learningare only available for a limited period of time.
But this theory hastrouble accountingfor continuedef-
fectsof age-of-acquisitiomfteradolescencéBialystok &
Hakuta,1999) and evidencethat someadult secondan-
guagelearnersare still able to reachflueng (seeBird-
song,1999).

An alternatveaccounis providedby Newport's (1990)
“less-is-more” hypothesis. Ratherthan attributing the
early languageadvantageto a specificlanguagdearning
device, this theorypostulateshatchildren’s languageac-
quisition may be aidedratherthanhinderedby their lim-
ited cognitive resourcesAccordingto this view, the abil-
ity to learna languagedeclinesover time as a result of
anincreasein cognitive abilities. The reasoningoehind
this suggestionis that a child’s limited perceptionand
memorymay force the child to focuson smallerlinguis-
tic unitswhich form the fundamentatomponentsf lan-
guage,asopposedo memorizinglarger units which are
lessamenablao recombination.While this is an attrac-
tive explanation for suchatheoryto be plausible the po-
tential benefitof limited resourcesnustbe demonstrated
bothcomputationallyandempirically.

The strongestevidence for Newport’s theory comes

*To appeaiin P. Quinlan(Ed.), Connectionistnodellingof cognitive
developmentHove, UK: PsychologyPress.

from computationalsimulationsand empirical findings
of EIman(1991,1993),Goldovsky andNewport (1993),
Kareey, LiebermanandLev (1997),CochranMcDonald,
andParault(1999),andKerstenandEarles(2001). In the
currentchapterwe considetthesestudiesn detailand,in
eachcasefind seriouscauseto doubttheir intendedsup-
portfor theless-is-mordiypothesis.

¢ Elman(1991,1993)foundthatsimplerecurrentcon-
nectionistnetworks could learn the structureof an
English-like artificial grammaronly when “starting
small"—wheneitherthe training corpusor the net-
work’s memorywaslimited initially andonly grad-
ually made more sophisticated. We shaw, to the
contrary that languagelearning by recurrentnet-
worksdoesnotdependnstartingsmall;in fact,such
restrictionshinder acquisitionas the languagesare
mademorerealistichby introducinggradedsemantic
constraint{Rohde& Plaut,1999).

e We discussthe simple learningtask introducedby
Goldowsky and Newport (1993) as a cleardemon-
strationof the advantageof memorylimitations. But
we show thattheir filtering mechanismactuallycon-
stitutesasevereimpairmentto learningin bothasim-
ple statisticalmodelanda neuralnetwork model.

e Kareey, Lieberman, and Lev (1997) argued that
small samplesizes, possibly resulting from weak
short-termmemory havetheeffectof enhancingor-
relationsbetweertwo obsenablevariables.But we
demonstratehatthe chancethata learneris ableto
detecta correlationactually improves with sample
sizeandthata simple predictionmodelindeedper
formsbetterwhenit relieson largersamples.

e CochranMcDonald,andParault(1999)taughtpar
ticipantsASL verbswith andwithoutadditionalcog-
nitive loadsandfound apparentlybettergeneraliza-
tion performanceor participantsin the load condi-
tion. Butwe arguethatthelearningtaskactuallypro-
vided no supportfor the expectedgeneralizatiorand
thatthe no-loadparticipantsimply learnedhemore
reasonablgeneralizatioomuchbetter
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¢ Finally, we considerthe Kerstenand Earles(2001)
findingsto providelittle supportfor the less-is-more
hypothesisbecausehe tasklearnedby participants
in their experimentis unlike naturallanguagdearn-
ing in someimportantandrelevant aspectsandthe
critical manipulationin their experimentinvolved
stagednput, ratherthancognitive limitations.

In the final section, we considersome generalprinci-

ples of learninglanguage-lile tasksin recurrentneural
networks and what the implicationsfor humanlearning
might be. We thenbriefly discussan alternatve account
for thelanguage-learninguperiorityof children.

2 Elman (1991, 1993)

Elman(1990,1991)setout to provide anexplicit formu-
lation of how a generalconnectionissystemmight learn
thegrammaticabtructureof alanguageRathethancom-
prehensioror overt parsing,Elmanchoseto trainthe net-
works to performword prediction. Although word pre-
diction is a far cry from languagecomprehensiont can
beviewedasa usefulcomponenbf languagegprocessing,
giventhatthenetwork canmake accuratgredictionsonly
by learningthe structureof the grammar Elmantrained
a simple recurrentnetwork—sometimegermedan “El-
man”network—to predictthenext wordin sentencegen-
eratedby an artificial grammarexhibiting numberagree-
ment, variable verb argumentstructure,and embedded
clausesHefoundthatthenetwork wasunableto learnthe
predictiontask—and,hence,the underlyinggrammar—
whenpresentedrom the outsetwith sentencegenerated
by the full grammar The network was, however, ableto
learnif it wastrainedfirst on only simplesentence§i.e.,
thosewithout embeddingsand only later exposedto an
increasingproportionof complex sentences.

It thusseemgeasonabléo concludethat stagednput
enabledthe network to focus early on simple and im-
portantfeatures,suchasthe relationshipbetweennouns
andverbs. By “starting small; the network had a bet-
terfoundationfor learningthe moredifficult grammatical
relationshipsvhich spanpotentiallylong anduninforma-
tive embeddings.Recognizingthe parallel betweenthis
findingandtheless-is-morédiypothesisElman(1993)de-
cidedto investigateamoredirecttestof Newport’s (1990)
theory Ratherthanstagingtheinput presentationElman
initially interferedwith the network’s memoryspanand
thenallowed it to graduallyimprove. Again, he found
successfulearningin thismemorylimited condition,pro-
viding muchstrongersupportfor the hypothesis.

2.1 Rohde and Plaut (1999) Simulation 1:
Progressive | nput

Rohdeand Plaut (1999) investigatedhow the needfor
starting small in learning a pseudo-naturalanguage
would be affectedif the languageincorporatedmore of
the constraintsof naturallanguagesA salientfeatureof
the grammarusedby Elmanis thatit is purely syntactic,
in thesensehatall wordsof aparticularclass suchasthe
singularnouns,wereidenticalin usage.A consequence
of this is thatembeddednaterialmodifying a headnoun
providesrelatively little informationaboutthe subsequent
correspondingerh Earlierwork by CleeremansSenan-
SchreiberandMcClelland (1989),however, haddemon-
stratedthatsimplerecurrentnetworks werebetterableto
learnlong-distancalependenciei finite-stategrammars
wheninterveningsequencewerepatrtially informative of
(i.e., correlatedwith) the distantprediction. Theintuition
behindthis finding is that the network’s ability to repre-
sentand maintaininformation aboutan importantword,
suchasthe headnoun,is reinforcedby the advantagehis
information providesin predictingwords within embed-
dedphrases.As a result,the noun can more effectively
aid in the predictionof the correspondingerbfollowing
theinterveningmaterial.

Onesourceof suchcorrelationsn naturallanguageare
distributional biases,due to semanticfactors,on which
nounstypically co-occurwith which verbs.For example,
supposealogsoften chasecats. Over the courseof train-
ing, the network hasencountered¢hased moreoften af-
ter processingentencebeginning The dog who... than
after sentencedeginning with other noun phrases.The
network can,therefore reducepredictionerrorwithin the
embeddedlauseby retainingspecificinformationabout
dog (beyondit beinga singularnoun). As a result, in-
formation on dog becomesavailable to supportfurther
predictionsin the sentenceasit continuede.g.,The dog
who chased the cat barked). Theseconsiderationsed
us to believe that languagessimilar to EIman’s but in-
volving weaksemanticconstraintamight resultin lessof
anadwantageor startingsmallin child languageacquisi-
tion. We beganby examiningthe effectsof anincremen-
tal training corpus, without manipulatingthe network’s
memory The methodswve usedwerevery similar, but not
identical,to thoseusedby EIman(1991,1993).

2.1.1 Grammar

Our pseudo-naturdanguagewas basedon the grammar
shavn in Table 1, which generatesimplenoun-verband
noun-\erb-nounsentencesvith the possibility of relative
clausemodificationof mostnouns.Relative clausesould
be eithersubject-atractedor object-extracted. Although
thislanguages quitesimple,in comparisorio naturallan-
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Tablel: The GrammarJsedin Simulationl

Table2: SemantidConstrainton VerbUsage

S — NPVI.| NPVT NP.

NP — NJ|] NRC

RC — whoVI| whoVT NP| who NPVT

N — boy| girl| cat| dog| Mary| John|
boys| girls| cats| dogs

VI — barks| sings| walks| bites| eats |
bark| sing| walk| bite | eat

VT — chases| feeds| walks| bites| eats |
chase | feed| walk| bite | eat

Note: Transition probabilitiesare specifiedand additional

constraintareappliedon top of this framework.

guage,it is nonetheles®f interestbecausejn orderto
male accuratepredictions,a network mustlearnto form
representationsf potentiallycomplex syntacticstructures
and rememberinformation, such as whetherthe subject
was singularor plural, over lengthy embeddings. The
grammarusedby EImanwasnearlyidentical,exceptthat
it had one fewer mixed transitvity verb in singularand
plural form, andthe two propernouns,Mary andJohn,
couldnotbemodified.

In our simulation, several additional constraintswere
appliedontop of thegrammaiin Tablel1. Primaryamong
thesewasthatindividual nounscould engageonly in cer
tainactions andthattransitveverbscouldactonly oncer
tain objects(seeTable2). Anotherrestrictionin thelan-
guagewasthatpropernounscould notactonthemseles.
Finally, constructionswvhich repeatan intransitive verb,
suchasBoys who walk walk, were disalloved because
of redundang. Theseso-calledsemanticconstraintsal-
ways appliedwithin the main clauseof the sentenceas
well aswithin any subclausesAlthough numberagree-
mentaffectedall nounsandverbsthedegreeto whichthe
semanticonstraintappliedbetweeranounandits mod-
ifying phrasewvascontrolledby specifyingtheprobability
thattherelevantconstraintsvould beenforcedor agiven
phrase.In this way, effectsof the correlationbetweena
nounandits modifying phrasepr of thelevel of informa-
tion the phrasecontainedaboutthe identity of the noun,
couldbeinvestigated.

2.1.2 Network Architecture

Thesimplerecurrennetwork usedin both EIman’s simu-
lationsandin the currentwork is shovn in Figure 1. In-
putswererepresentedslocalistpatternsor basisvectors:
Eachword wasrepresentedtby a singleunit with activity
1.0, all otherunitshaving actiity 0.0. Thisrepresentation
waschoserto deprive the network of ary similarity struc-
tureamongthe wordsthatmight provide indirectcluesto
their grammaticalproperties. The samel-of-n represen-

Intransitve  Transitve Objects
Verb Subjects Subjects  if Transitve
chase - ary ary
feed - human animal
bite animal animal ary
walk ary human only dog
eat ary animal human
bark only dog - -
sing humanorcat - -

Note: Columnsindicate legal subjectnounswhen verbs
areusedintransitively or transitvely andlegal objectnouns
whentransitive.
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Figurel: Thearchitectureof thenetwork usedin thesim-
ulations.Eachsolid arron representfull connectvity be-
tweenlayers, with numbersof units next to eachlayer.
Hidden unit statesare copiedto correspondingcontext
units (dashedarrow) aftereachwordis processed.

tationwasalsousedfor outputswhich hasthecorvenient
propertythattherelative activationsof multiple wordscan
berepresentethdependently

On eachtime step,a new word was presentedy fix-
ing the activationsof the input layer. The actwvity in the
mainhiddenlayerfrom the previoustime stepwascopied
to the context layer. Activationthenpropagatedhrough
the network, asin a feed-fornard model, suchthat each
unit’s activationwasa smooth,nonlinear(logistic, or sig-
moid) function of its summedweightedinput from other
units. Theresultingactivationsover the outputunitswere
thencomparedvith their targetactivations,generatingan
errorsignal. In a simplerecurrentnetwork, errorsarenot
back-propagatethroughtime (cf. RumelhartHinton, &
Williams, 1986) but only throughthe currenttime step,
althoughthis includesthe connectiondrom the context
unitsto the hiddenunits. Theseconnectionsallow infor-
mationaboutpastinputs—asencodedn the prior hidden
representationopiedontothe context units—toinfluence
currentperformance.

Althoughthetargetoutputusedduringtrainingwasthe
encodingfor the actualnext word, a numberof words
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weretypically possibleatary givenpointin thesentence.
Therefore,to perform optimally the network must gen-
erate,or predict,a probability distribution over the word
unitsindicatingthelik elihoodthateachwordwould occur
next. Averagedacrossthe entirecorpus,this distribution
will generallyresultin thelowestperformancesrror.

2.1.3 Corpora

Elman’scomple trainingregimeninvolvedtraininganet-
work on a corpusof 10,000 sentencesy/5% of which

were“complex” in thatthey containedat leastonerela-
tive clause.In his simpleregimen,the network wasfirst

trained exclusively on simple sentencegnd thenon an
increasingproportionof complex sentenceslnputswere
arrangedn four corpora,eachconsistingof 10,000sen-
tences. The first corpuswas entirely simple, the second
25% comple, the third 50% comple, andthefinal cor-

puswas75%complex—identicalto theinitial corpusthat
the network had failed to learn whenit alonewas pre-
sentedduring training. An additional75% complex cor-

pus,generatedh the sameway asthelasttrainingcorpus,
wasusedfor testingthe network.

In orderto studytheeffectof varyinglevelsof informa-
tion in embeddedlauseswe constructedive grammar
classes. In classA, semanticconstraintsdid not apply
betweena clauseandits subclausepnly betweennouns
andverbsexplicitly presentin eachindividual clause.In
classB, 25% of the subclausegespectedhe semantic
constraintof their parentclause In suchcasesthemodi-
fied nounmustbe a semanticallyalid subjectof theverb
for a subject-relatie or objectof the verbfor an object-
relative. In classC, 50% of the subclausesespectedhis
constraint,75%in classD, and100%in classE. There-
fore, in classA, which was mostlike Elman’'s grammay
the contentsof a relative clauseprovided no information
aboutthe nounbeingmodified otherthanwhetherit was
singularor plural, whereasclassE producedsentences
which were the most English-like. We should empha-
sizethat, in this simulation,semanticconstraintsalways
appliedwithin a clause,including the main clause. This
is becauseve were interestedorimarily in the ability of
the network to performthedifficult mainverbprediction,
which relied not only on the numberof the subject,but
onits semantigropertiesaswell. In asecondsimulation,
we investigatea casein which all the semanticonstraints
wereeliminatedto producea grammaressentiallyidenti-
calto Elmans.

As in EIman’s work, four versionsof eachclasswere
createdto producelanguagesof increasingcomplexity.
GrammarsAg, Ass, Asg, andAys, for example,produce
0%, 25%,50%,and75%complex sentencesespectiely.
In addition, for eachlevel of compleity, the probability
of relative clausemodificationwasadjustedo matchthe

averagesentencédengthin EIman's corpora,with the ex-

ceptionthatthe 25% and50% complex corporainvolved
slightly longersentenceto provide a moreevenprogres-
sion, reducingthe large differencebetweenthe 50% and
75% complex conditionsapparentin Elman’s corpora.
Specifically grammarswith complexity 0%, 25%, 50%,
and75%respectrely had0%, 10%,20%, and30% mod-
ification probability for eachnoun.

For eachof the 20 grammarg(five levels of semantic
constraintcrossedvith four percentagesf complec sen-
tences)fwo corporaof 10,000sentencesveregenerated,
onefor trainingandthe otherfor testing. Corporaof this
sizearequiterepresentatie of the statisticsof thefull lan-
guagefor all but the longestsentenceswhich are rela-
tively infrequent. Sentencesongerthan 16 words were
discardedin generatingthe corpora, but thesewere so
rare (< 0.2%) that their loss should have had negligi-
ble effects. In orderto performwell, a network of this
sizecouldn't possibly*memorize”thetraining corpusbut
mustlearnthe structureof thelanguage.

2.1.4 Training and Testing Procedures

In the condition Elman referredto as “starting small}
he trained his network for 5 epochs(completepresen-
tations)of eachof the four corpora,in increasingorder
of compleity. During training, weights were adjusted
to minimize the summedsquarederror betweenthe net-
work’s prediction and the actual next word, using the
back-propagatiorearning procedure(Rumelhartet al.,
1986) with a learningrate of 0.1, reducedgraduallyto
0.06.No momentunmwasusedandweightswereupdated
aftereachword presentationWeightswereinitialized to
randomvaluessampleduniformly betweent+0.001.

For eachof the five languageclasseswe trainedthe
network shovn in Figure 1 using both incrementaland
non-incrementatraining schemes.In the comple regi-
men,thenetwork wastrainedonthemostcomplex corpus
(75% compl) for 25 epochswith a fixed learningrate.
Thelearningratewasthenreducedor afinal passhrough
thecorpus.In thesimpleregimen,thenetwork wastrained
for fiveepochsneachof thefirstthreecorporain increas-
ing orderof compleity. It wasthentrainedon the fourth
corpusfor 10 epochsfollowedby afinal epochatthere-
ducedlearningrate. The six extra epochsof trainingon
thefourth corpus—notncludedin EIman'sdesign—were
intendedo allow performancevith thesimpleregimento
approachtasymptote.

Becausewe were interested primarily in the per
formancelevel possible under optimal conditions, we
searche@wide rangeof trainingparameterso determine
a setwhich consistentlyachieved the bestperformance
overall! We trainedour network with back-propagation

1Theeffectsof changeso someof thesgparametevalues—inpartic-
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usingmomenturmof 0.9, a learningrateof 0.004reduced
to 0.0003for thefinal epoch abatchsizeof 100wordsper
weightupdate andinitial weightssampleduniformly be-
tween=+1.0 (cf. £0.001for EIman’s network). Network
performanceor both training andtestingwas measured
in termsof divergenceandnetwork outputswerenormal-
ized using Luce ratios (Luce, 1986),alsoknown assoft-
maxconstraint{seeRohde& Plaut,1999).

Becauseour grammarswere in standardstochastic,
contet-freeform, it waspossibleto evaluatethe network
by comparingits predictionsto the theoreticallycorrect
next-word distributions given the sentencecontext (Ro-
hde, 1999). By contrast,it wasnot possibleto generate
suchoptimal predictionsbasedon Elman’s grammar In
order to form an approximationto optimal predictions,
Elmantrainedan empiricallanguagemodelon sentences
generatedn the sameway asthe testingcorpus. Predic-
tionshby thismodelwerebasednthe obsenednext-word
statisticggivenevery sentenceontext to which it wasex-
posed.

2.1.5 Resultsand Discussion

Elmandid not provide numericalresultsfor the comple
condition, but he did reportthat his network wasunable
to learnthe taskwhentrainedon the mostcomplex cor-
pusfrom the start. However, learningwaseffective in the
simpleregimen,in which the network wasexposedto in-
creasinglycomplex input. In this condition,Elmanfound
thatthe meancosiné of the anglebetweerthe network’s
predictionvectorsandthoseof the empiricalmodelwas
0.852(SD= 0.259),wherel.0is optimal.

Figure 2 shows, for eachtraining condition,the mean
divergenceerror per word on the testing corporaof our
network whenevaluatedagainstthe theoreticallyoptimal
predictionsgiven the grammar To reducethe effect of
outliers,andbecausave wereinterestedn thebestpossi-
ble performancetesultswereaveragecdver only the best
16 of 20 trials. Someavhatsurprisingly ratherthananad-
vantagdor startingsmall,thedatarevealsasignificantad-
vantagefor the comple training regimen (£} 150 = 53.8,
p < .001). Underno conditiondid the simple training
regimenoutperformthe comple training. Moreover, the
adwantagein startingcomplec increasedvith the propor
tion of fully constrainedelative clauses.Thus,whenthe
16 simpleand 16 complex training regimennetworks for
eachgrammarwere pairedwith one anotherin order of
increasingoverall performancetherewas a strongposi-
tive correlation(r = .76, p < .001) betweenthe order of

ular, themagnitudeof initial randomweights—aresvaluatedn asecond
simulation.

2Thecosineof theanglebetweeriwo vectorsof equaldimensionality
canbe computedasthe dot product(or sumof the pairwiseproductsof
the vector elements)divided by the productof the lengthsof the two
vectors.
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Figure2: Meandivergenceperword predictionover the

75% complex testing corporageneratedrom grammar
classedA throughE (increasingn the extentof semantic
constraints¥or the simpleandcomple training regimes.

Notethatlower valuescorrespondo betterperformance.
Meansand standarderrorswere computedover the best
16 of 20trialsin eachcondition.

the grammarsfrom A—E and the differencein error be-

tweenthe simpleversuscomple trainingregimes® This

is consistentvith the ideathat startingsmallis mostef-

fective whenimportantdependenciespanuninformative

clausesNeverthelessagainsiexpectationsstartingsmall

failedto improve performancevenfor classA, in which

relative clausesdid not conformto semanticconstraints
imposedby the precedinghoun.

In summary startingwith simpleinputs provedto be
of no benefitand was actually a significant hindrance
when semanticconstraintsapplied acrossclauses. The
networkswereableto learnthe grammargjuitewell even
in the comple training regimen, as evidencedby addi-
tionalanalyseseportedn RohdeandPlaut(1999).More-
over, theadwantagefor trainingonthefully comple cor-
pusincreasedas the languagewas mademore English-
like by enforcinggreaterdegreesof semanticconstraints.
While it hasbeenshawn previously that beginning with
areducedraining setcanbe detrimentalin classification
taskssuchasexclusive-OR(Elman,1993),it appearshat
beginning with a simplified grammarcan also produce
significantinterferenceon a more language-lile predic-
tion task. At thevery least,startingsmalldoesnot appear
to be of generalbenefitin all languagdearningenviron-
ments.

3Thecorrelationwith grammarclassis alsosignificant(r = .65,p <
.001)whenusingtheratio of thesimpleto complex regimenerrorrates
for eachpair of networks, ratherthantheir difference.
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2.2 Rohde and Plaut (1999) Simulation 2:
Replication of EIman (1993)

Our failure to find an advantagefor startingsmallin our
initial work led us to askwhat differencesbetweenthat
studyandElman's wereresponsibldor thediscrepante-
sults. All of the grammarsn thefirst setof simulations
differed from Elman’s grammarin that the languagere-
tainedfull semanticconstraintswithin the mainclause.lt

is possiblethatwithin-clausedependencieserein some
way responsibldor aidinglearningin the comple train-

ing regimen. Thereforewe producedalanguagelabeled
R for replication which wasidenticalto Elman’s in all

known respectsthusruling outall but the mostsubtledif-

ferencesin languageas the potentialsourceof our dis-

parateresults.

2.2.1 Methods

Like Elman's grammay grammarR usesjust 12 verbs:
2 pairseachof transitive, intransitve, and mixed transi-
tivity. In addition, asin Elman’s grammay the proper
nounsMary and John could not be modified by a rel-
ative clauseandthe only additionalconstraintsnvolved
numberagreement. We should note that, althoughour
grammarand EIman’s producethe samesetof stringsto
the bestof our knowledge, the probability distributions
over the stringsin the languagesnay differ somavhat.
As before, corporawith four levels of compleity were
producedln this casethey very closelymatchedEIman’s
corporain termsof averagesentencéength.

Networks weretrainedon this languageboth with our
own methodsand parameterandwith thoseascloseas
possibleto the onesElmanused. In the former case,we
usednormalizedoutputunitswith adivergencesrrormea-
sure,momentumof 0.9, elevenepochsof training on the
final corpus,a batchsize of 10 words, a learningrate of
0.004 reducedto 0.0003for the last epoch, and initial
weightsbetween£1. In the latter case,we usedlogis-
tic outputunits,squarecerror, no momentumfive epochs
of training on the fourth corpus,online weight updating
(afterevery word), a learningrate of 0.1 reducedto 0.06
in equalstepswith eachcorpuschangeandinitial weights
betweent0.001.

2.2.2 Resultsand Discussion

Even when training on sentence$rom a grammarwith
no semanticconstraintspur learningparametersesulted
in an adwantagefor the complec regimen. Over the best
12 of 15 trials, the network achiesed an averagediver-
genceof 0.025 underthe complex condition compared
with 0.036for the simple condition (Fi,22 = 34.8,p <
.001). Aside from the learning parameterspne impor-
tantdifferencebetweenour training methodandElman’s

was that we added6 extra epochsof training on the fi-
nal corpusto both conditions. This extendedtraining did
not, hawever, disproportionatelypenefithe complex con-
dition. Betweenepoch20 and25, the averagedivergence
error under the simple regimen droppedfrom 0.085 to
0.061,0r 28%. During the sameperiod, the error under
the complex regimenonly fell 8%, from 0.051to 0.0474

Whenthe network wastrainedusing parametersimi-
lar to thosechoserby Elman.,it failedto learnadequately
settlinginto badlocal minima. The network consistently
reachedx divergenceerrorof 1.03underthesimpletrain-
ing regimen and 1.20 under the complex regimen. In
termsof city-block distancetheseminimafall at1.13and
1.32respectrely—muchworsethanthe resultsreported
by Elman. We did, however, obtain successfulearning
by usingthe sameparametersut simply increasingthe
weightinitializationrangefrom £0.001 to £1.0, although
performanceindertheseconditionswasnot quiteasgood
aswith all of our parameterand methods.Even so, we
againfound a significantadvantagefor the comple reg-
imen over the simple regimenin terms of meandiver-
genceerror(meanof 0.122vs.0.298, respectiely; Fi 2o
=121.8,p < .001).

Giventhatthe strengthof initial weightsappeargo be
a key factorin successfulearning,we conducteda few
additionalrunsof the network to examinetherole of this
factorin more detail. The networks weretrainedon 25
epochsof exposureto corpusRy; underthe complex reg-
imen usingparametersimilar to Elman’s, althoughwith
afixedlearningrateof 1.0(i.e., without annealing).Fig-
ure 3 shows the sumsquarederror on the testingcorpus
over the courseof training, asa function of the rangeof
theinitial randomweights.It is apparenthatlargerinitial
weightshelpthenetwork breakthroughthe plateauvhich
liesatanerrorvalueof 0.221.

The dependencef learningon the magnitudef ini-
tial weightscanbe understoodn light of propertieof the
logistic activation function, the back-propagatiorearn-
ing procedureandthe operationof simplerecurrentnet-
works. It is generallythoughtthat smallrandomweights
aid errorcorrectinglearning in connectionistnetworks
becausehey placeunit activationswithin thelinearrange
of thelogistic functionwhereerrorderivatives,andhence
weight changes,will be largest. However, the error
derivativesthat are back-propagatetb hiddenunits are
scaledby their outgoingweights;feedbackto the restof
the network is effectively eliminatedif theseweightsare
too small. Moreover, with very smallinitial weights,the
summednputsof unitsin thenetwork areall almostzero,

4The further drop of theseerror values,0.047and0.061,to the re-
portedfinal valuesof 0.025and0.036resultedrom the useof areduced
learningratefor epoch26. Endingwith a bit of trainingwith avery low
learningrateis particularly useful when doing online, or small batch
size,learning.
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Figure3: Sumsquarecderrorproducedby the network on
the testing set at eachepochof training on corpusRy5
underthe complex regimen,asa function of the rangeof
initial randomweights.

yielding activationsvery closeto 0.5 regardlessf thein-
put presentedo the network. This is particularly prob-
lematicin a simplerecurrentnetwork becauseét leadsto
contet representation&opiedfrom previoushiddenacti-
vations)thatcontainlittle if any usableinformationabout
previous inputs. Consequently considerablyextended
training may be requiredto accumulatesufficient weight
changego begin to differentiateeventhe simplestdiffer-
encesn contet (seeFigure3). By contraststartingwith
relatively largeinitial weightsnotonly preserestheback-
propagatecrror derivativesbut alsoallows eachinput to
have adistinctandimmediatémpacton hiddenrepresen-
tationsand, hence,on context representationsAlthough
the resulting patternsmay not be particularly good rep-
resentation$or solvingthetask(becausé¢he weightsare
random),they at leastprovide an effective startingpoint
for beginningto learntemporaldependencies.

In summaryon a grammaressentiallyidenticalto that
usedby Elman (1991, 1993), we found a robust advan-
tagefor trainingwith the full complexity of thelanguage
from the outset. Although we cannotdirectly compare
the performanceof our network to that of EIman’s net-
work, it appearsik ely thatthecurrentnetwork learnedhe
taskconsiderabhbetterthanthe empiricalmodelthatwe
usedfor evaluation.By contrastthe network wasunable
to learnthelanguagen eitherthe simpleor the complex
conditionwhenwe usedparametersimilar to thoseem-
ployed by Elman. However, increasingthe rangeof the
initial connectionweightsallowed the network to learn
quite well, althoughin this casewe againfound a strong
adwantagedor startingwith thefull grammar It waspossi-
ble to eliminatethis advantageby removing all dependen-
ciesbetweermmain clausesandtheir subclausesandeven

to reverseit by, in addition,training exclusively on com-
plex sentencesBut thesdrainingcorporabearfarlessre-
semblancéo theactualstructureof naturallanguagehan
do thosewhich producea clearadvantagefor trainingon
thefull compleity of thelanguagdrom the beginning.

2.3 Rohde and Plaut (1999) Simulation 3:
Progressive Memory

Elman(1993)arguedthathis finding thatinitially simpli-

fied inputs were necessanyor effective languagelearn-

ing was not directly relevant to child languageacquisi-
tion becausejn his view, therewas little evidencethat

adultsmodify the grammaticalstructureof their speech
wheninteractingwith children (althoughwe would dis-

agreeseee.g.,Gallavay & Richards1994;Snaw, 1995;

Sokolov, 1993). As an alternatve, EImansuggestedhat

thesameconstraintouldbesatisfiedf thenetwork itself,

ratherthanthetraining corpus,wasinitially limited in its

compleity. Following Newport'sless-is-mordiypothesis
(Newport, 1990; Goldowsky & Newport, 1993), EIman

proposedhat the gradualmaturationof children's mem-

ory and attentionalabilities could actually aid language
learning.

To test this proposal,Elman (1993) conductedaddi-
tional simulationsin which the memoryof a simplere-
currentnetwork (i.e., the processof copying hiddenac-
tivations onto the context units) was initially hindered
and then allowed to graduallyimprove over the course
of training. Whentrainedon the full complexity of the
grammarfrom the outset,but with progressrely improv-
ing memory the network was againsuccessfuht learn-
ing the structureof the languagewhich it hadfailed to
learnwhenusingfully maturememorythroughouttrain-
ing. In this way, Elman’s computationafindings dove-
tailed perfectlywith Newport's empiricalfindingsto pro-
videwhatseemedik e compellingevidencefor theimpor-
tanceof maturationatonstrainton languageacquisition
(seee.g.,.Elmanetal., 1996,for furtherdiscussion).

Given that the primary computationakupportfor the
less-is-moreéhypothesiscomesfrom Elman’s simulations
with limited memoryratherthanthosewith incremental
training corpora,it is importantto verify thatour contra-
dictory findingsof anadwantagegor the complex regimen
in Simulationsl and2 alsohold by comparisomwith train-
ing underprogressiely improving memory Accordingly,
we conductedsimulationssimilar to thoseof Elman, in
which a network with graduallyimproving memorywas
trainedon the full semanticallyconstrainedyrammay E,
aswell ason thereplicationgrammay R, using both EI-
man’s andour own training parameters.
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2.3.1 Methods

In his limited-memorysimulation,Elman (1993)trained
anetwork exclusively on the complex corpus? which he
had previously found to be unlearnable.As a model of
limited memoryspantherecurrentfeedbackorovidedby
the context layer waseliminatedperiodicallyduring pro-
cessingby settingthe activationsat this layerto 0.5. For
thefirst 12 epochof training, this wasdonerandomlyaf-
ter 3—4wordshadbeenprocessedwithout regardto sen-
tenceboundariesFor thenext 5 epochghe memorywin-
dow wasincreasedo 4-5 words, thento 5-6, 67, and
finally, in the last stageof training, the memorywasnot
interferedwith atall.

In the currentsimulation,the training corpusconsisted
of 75% complex sentencesalthoughElman’s may have
extendedto 100% complexity. Like EIman,we extended
the first period of training, which useda memorywin-
dow of 3—4words,from 5 epochgo 12 epochs.We then
trainedfor 5 epochseachwith windows of 4-5 and 5-
7 words. The length of the final period of unrestricted
memorydependeabn the training methods.Whenusing
our own methodg(seeSimulation2), aswhentrainingon
the final corpusin the simple regimen, this period con-
sistedof 10 epochsfollowed by one more with the re-
ducedlearningrate. Whentraining with our approxima-
tion of EIman’s methodson grammarR, this final period
wassimply five epochdong. Therefore underboth con-
ditions,the memory-limitednetwork wasallowedto train
for atotal of 7 epochsmorethanthe correspondingdull-
memorynetwork in Simulationsl and2. Whenusingour
methods]earningratewasheldfixeduntil thelastepoch,
asin Simulationl. With Elman's method we reducedhe
learningratewith eachchangdn memorylimit.

2.3.2 Resultsand Discussion

Although he did not provide numericalresults, Elman
(1993) reportedthat the final performancewas as good
asin the prior simulationinvolving progressie inputs.
Again, this was deemeda succesgelative to the com-
plex, full-memoryconditionwhich wasreportedlyunable
to learnthetask.
Usingourtrainingmethodonlanguager, thelimited-
memorycondition resultedin equivalentperformanceo
thatof the full-memory condition,in termsof divergence
error (meansof 0.027 vs. 0.025, respectiely; Fj oy =
2.12,p > .15). Limited memorydid, however, provide a
significantadvantageover the correspondingrogressie-
inputs condition from Simulation2 (mean0.036; Fi 22
= 24.4,p < .001). Similarly, for languageE, the limited-
memoryconditionwasequialentto thefull-memorycon-

51t is unclearfrom the text whetherElman (1993) usedthe corpus
with 75%or 100%comple sentences the progressie memoryexper
iments.

dition (meanof 0.093for both; F' < 1) but betterthanthe
progressie-inputsconditionfrom Simulation2 (meanof
0.115;F; 25 = 31.5,p < .001).

With EIman’strainingmethodson grammarR, the net-
work with limited memory consistentlysettledinto the
samelocal minimum, with a divergenceof 1.20, as did
the network with full memory(seeSimulation2). Using
the sameparameterdut with initial connectionweights
in therange+1.0,thelimited-memorynetwork againper
formedalmostequialentlyto thenetwork with full mem-
ory (meansof 0.130vs. 0.122 respectiely; F; o5 = 2.39,
p > 0.10), andsignificantly betterthanthe full-memory
network trainedwith progressie inputs (meanof 0.298;
F1 92 =109.1,p < .001).

To summarizein contrastwith EIman'sfindings,when
training on the fully complex grammarfrom the outset,
initially limiting the memoryof a simple recurrentnet-
work providedno advantageover training with full mem-
ory, despitethe factthatthe limited-memoryregimenin-
volved 7 moreepochsof exposureto thetraining corpus.
On the other hand, in all of the successfulconditions,
limited memorydid provide a significantadvantageover
graduallyincreasingthe compleity of the training cor-
pus.

24 Summary

Contraryto theresultsof EIman(1991,1993),Rohdeand
Plaut(1999)foundthatit is possiblefor astandardsimple
recurreninetwork to gainreasonabl@roficieng in alan-
guageroughly similar to thatdesignedy Elmanwithout
stagednputsor memory In fact, therewasa significant
adwantagéfor startingwith thefull languageandthis ad-
vantageincreasedas languagesvere mademore natural
by increasinghe proportionof clauseavhich obeyedse-
manticconstraints.Theremay, of course be othertrain-
ing methodswhich would yield evenbetterperformance.
However, attheveryleast,it appearshattheadvantageof
stagednputis notarobustphenomenotin simplerecur
rentnetworks.

In orderto identify the factorsthat led to the disad-
vantagefor startingsmall, we returnedto a more direct
replicationof Elman’s work in Simulation2. Using El-
man’s parametersye did find what seemedo be anad-
vantagefor startingsmall, but the network failed to suf-
ficiently masterthe taskin this condition. We do not yet
understandvhat led Elmanto succeedn this condition
wherewe failed. One obsenation madein the course
of thesesimulationswas that larger initial randomcon-
nectionweightsin the network werecrucialfor learning.
We thereforereappliedElman’s training methodsbut in-
creasedhe rangeof the initial weightsfrom +0.001 to
+1.0. Both this conditionandour own training parame-
tersrevealeda strongadwantagefor startingwith the full
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language.

Finally, in Simulation 3 we examined the effect of
progressie memory manipulationssimilar to thoseper
formed by Elman (1993). It was found that, despitein-
creasedraining time, limited memoryfailed to provide
an adwantageover full memoryin ary condition. Inter
estingly training with initially limited memorywasgen-
erally lessof a hindranceto learningthan training with
initially simplifiedinput. In all casesthough,successful
learningagainrequiredthe useof sufiiciently largeinitial
weights.

Certainly there are situationsin which starting with
simplified inputsis necessaryor effective learningof a
predictiontaskby arecurrennetwork. For example Ben-
gio, Simard, and Frasconi(1994) (seealso Lin, Horne,
& Giles, 1996) report suchresultsfor tasksrequiring a
network to learncontingenciesvhich span10—60entirely
unrelatednputs. However, suchtasksarequite unlike the
learningof naturallanguage It mayalsobe possiblethat
startingwith a high proportionof simple sentencess of
significantbenefitin learningotherlanguageprocessing
tasks,suchascomprehensionA child’s discovery of the
mappingbetweerform andmeaningwill likely befacili-
tatedif he or sheexperiencepropositionallysimpleutter
ancesvhosemeanings apparenbr is clarifiedby theac-
comparying actionsof theparent.However, therealques-
tion in addressinghe less-is-morenypothesiss whether
limited cognitive capacitywill substantiallyaid this pro-
cess.

Having failedto replicateElman’sresults,it seemsap-
propriateto turn a critical eye on the othermajor sources
of evidencefor the less-is-morehypothesis.Aside from
Elman’ findings, four main studieshave beencharac-
terizedas providing supportfor the advantageof learn-
ing with limited resources. Goldowvsky and Newport
(1993) presentecvidence of the noise-reducingpower
of randomfiltering in a statisticallearning model of a
simple morphologicalsystem. Kareey, Lieberman,and
Lev (1997) offered a statistical algumentin favor of
the correlation-enhancingpower of small samplesand
performedtwo empirical studies purportedto confirm
this. The othertwo studiesare more purely empirical.
Cochran,McDonald, and Parault (1999) taught partici-
pantsASL verbswith andwithout the presenceof a si-
multaneouscognitive load and with practiceon the full
signsor on individual morphemes.Finally, Kerstenand
Earles(2001)taughtparticipantsa simplenovel language
with andwithout sequentiainput. We discusseachof the
four papersherein somedetail.

3 Goldowsky and Newport (1993)

Goldowsky andNewport (1993)proposech simplelearn-
ing task, and one form of learningmodelthat might be
usedto solve the task. Training examplesconsistedof
pairingsof forms andmeanings.A form hadthreeparts,
A, B, andC. For eachpart therewere three possible
values: Ay, A,, A3, By, Bs, etc. Meaningswere also
composedf threeparts,M, N, andO, eachwith three
values. Therewasa very simple mappingfrom formsto
meanings:A;, Az, and A3 correspondetb M, M, and
M3, respectiely, By, B, and B3 correspondedo Ny,
N,, and N3, andsoforth.® Thus,theform 4, B;C3 had
themeaningM2 N1 Os. Thetaskwas,apparentlyto learn
this simpleunderlyingmapping.

Goldowsky and Newport suggestedhat one way to
solve thetaskmightbeto gatheratablewith countsof all
form andmeaningcorrespondencescrosssomeobsened
data. If the form A,B;C5; andthe meaningMsN;Os
wereobsened,themodelwouldincrementvaluesof cells
in the table correspondingo the pairing of eachof the
eightsubset®of the form symbolswith eachsubsebf the
threemeaningsymbols. If trainedon all 27 possibleex-
amplesthemodelwould have a valueof 9 for eachof the
cells correctly pairing individual elementsof the form to
individualelement®f themeaninge.g. 4; to M; andB;
to N3). Thenext largest,incorrectly paired,cells would
have a value of 3 andthe restof the cells would have a
valueof 1.

Goldowsky and Newport suggestedhat thereis too
much noisein sucha table becauseof the mary values
representingncorrector overly complex pairings. They
thenintroduceda filtering schememeantto simulatethe
effect of poorworking memoryon a child’s experiences.
Beforeaform/meaningpairis enterednto thetable,some
of itsinformationis lostatrandom.Half of thetime oneof
the threeelementof the form is retainedandhalf of the
time two elementsareretained. Lik ewise for the mean-
ing. The authorsarguedthat this improveslearningbe-
causdt producesatablewith a highersignal-to-noisaa-
tio. Therefore,they concluded,having limited memory
canbehelpfulbecausét canhelpthelearnerfocusonthe
simple,oftenimportant,detailsof a mapping.

But we should examine this learning situation a bit
more carefully. First of all, in what senses the signal-
to-noiseratio improving asa resultof filtering? Theratio
betweerthecorrect,largestvaluesin thetablein theadult
(unfiltered)caseandthe next largestcompetitorsvas3:1.
In thechild (filtered) case theexpectedratioremains3: 1.
Although someof the competitorswill becomepropor

6The mapping usedin the Goldovsky and Newport (1993) pa-
per actually includedone exception, thatform A4B4C4 hasmeaning
M3 N303. Becausehe introductionof this did not seemto strengthen
their casefor startingsmall, it is eliminatedherefor simplicity.
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tionatelylesslikely, otherswill not. Whatis eliminated
by thefiltering is the large numberof very unlikely map-
pings. So the signal-to-noiseratio is improving if it is

takento betheratio of the correctvalueto the sumof all

othervalues.If takento betheratio of thecorrectvalueto

thenearestncorrectvalue,thereis noimprovement.Fur-

thermore,the child learnermust experiencemary more
form/meaningpairingsthantheadultlearnerbeforeit can
adequatelyill its co-occurrencéable.

To seetheimplicationsof thesepoints,we needto make
the task somavhat more explicit. Goldowsky and New-
port (1993) presentedh model that countsstatistics,but
not one that actually solves the form/meaningmapping.
To completethe story, we will needto generatea model
that is capableof taking a form and producingits best
guessfor the appropriatemeaning. Two potential solu-
tions to this problemimmediatelycometo mind. In the
first, arguablysimpler methodthemodellooksdown the
column of valuesunderthe given form and chooseghe
meaningcorrespondingo thelargestvalue. If two mean-
ings have the samestrength the modelis countedwrong.
Thiswill bereferredto asthe Plurality method.

In thesecondmethodthe modeldraws atrandomfrom
the distribution of values,suchthatthe probability of se-
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Figure4: LearningtheGoldowsky & Newport(1993)task
usingraw countsin a noise-freeervironment.

the simulations.50% of the time, the operationof incre-
mentinga valuein thetablefailed. Thus,half of the data
waslost at random. As showvn in Figure 5, this manipu-

lectinga meaningis proportionalto the value associated lation had almostno effect on the Samplingmethod,but

with that meaning. This Samplingmethodseemsto be
morein line with what Goldowsky and Newportimplied
might be going on, judging from their use of the term
signal-to-noiseratio. The Plurality methodonly fails if

the nearestompetitoris asstrongasthe correctanswer
In contrastthe Samplingmethodis wrongin proportion
to the total strengthof competitors.Both of thesemeth-
odswereimplementedndtestedexperimentallywith and
without randomfiltering. The modelswere judged by
their ability to provide the correctmeaningfor eachof
the nine forms involving a single element. The results,
averagedover 100 trials in eachcondition,are showvn in

Figure4.

As Goldowsky andNewport(1993)suggestedheirfil-
teringmechanisnis indeedbeneficialwhenusedwith the
Samplingmethod,achiering a scoreof about25.2%ver
sus14.3%without filtering. However, Samplingoverall
performsquitepoorly. ThePluralitymethods muchmore
effective. But in thatcase filtering is harmful,andslows
learningdown considerablyEvenafter 200trials, thefil-
teredmodelis ableto completelysolvethetaskonly about
80%of thetime.

Now onemightreasonablynake theargumentthatthis
isn't a fair comparison.Perhapshe Plurality methodis
muchmoresusceptiblg¢o noiseandthe benefitof thefil-
terisn’t apparenin suchperfectconditions. After all, it
is probablyunreasonabléo expectthat a humanlearner
is ableto perfectlynoticeandstoreall availableinforma-
tion. To testthis possibility asourceof noisewasaddedo

did have someeffect on the Plurality method. However,
thePlurality methodremainedsignificantlybetterwithout
thefilter.

A final considerationis thatthe bubble diagramsused
to representhe form/meaningco-occurrenceablein the
Goldowsky andNewport (1993)paperdid notdirectly re-
flectraw co-occurrenceounts.Theradiusof thebubbles
was proportionalto the ratio of the co-occurrenceount
to the squareroot of the productof the overall number
of occurrencesf theform andthe overall numberof oc-
currencef the meaning. This wastermedthe consis-
tencyof co-occurence Soonemight ask, how well do
the two proposedmodelsperformif they work with co-
occurrenceonsisteng valuesratherthanraw counts.As
shawvn in Figure6, performancealeclinesslightly for the
Samplingmethodandimprovesslightly for the Plurality
methodwith filtering. But overall the resultsarequalita-
tively similar.

Thus,with themuchmaoreeffective Plurality methodof
determiningorm/meaningpairsfrom co-occurrenceata,
the filtering mechanismwas a serioushindrance. But it
seemghatbuilding a largetablemaynot beat all similar
to theway thehumanbrainmightsolve this mappingtask.
Perhaps bettermodelis thatof a connectionishetwork.
Could sucha modellearnthe underlyingregularity and
would it benefitfrom the samefiltering methodproposed
by Goldowsky andNewport? To answetthis questionwe
performedsomesimulationexperiments.

Firsta simpleone-layemetwork wasconstructedyith

10
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Figureb: Learningthe Goldowsky & Newport(1993)task
usingraw countswith randomlossof 50% of the data.
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Figure6: Learningthe Goldowsky & Newport(1993)task
usingcorrelationvalueswith no noise.

a 9-unit input layer fully connectedto a 9-unit output
layer. The nineinput units correspondedb the nine pos-
sibleelementof theform. Oneof thefirst threeunitswas
turnedon to representhe A element,one of the second
setof threeunits wasturnedon to representhe B ele-
ment,andsoforth. Similarly, the nine unitsin the output
representationorrespondetb theninepossibleelements
of themeaningwith threeof thenineunitsnormallyhav-
ing targetsof 1, andthe resthaving targetsof 0. If an
elemenbf theform waseliminatedby thefiltering mech-
anism,the correspondinghreeunits of theinputwereall
turnedoff. If anelementof the meaningwaseliminated,
the correspondindhreeunits of the outputhad no target
values. The network was testedby presentingt with a
singleelementof theform asaninput. Althoughthe net-
work may neverhave beentrainedto performthis particu-
lar mappingthedesiredresponsés thatit will outputjust
the correspondingelementof the meaning. A response
wasconsideredorrectif theactivationsof all nineoutput
unitswereon thecorrectsideof 0.5.

In orderto argue that filtering is or is not beneficial,
onecannotsimply rely on performancainderasingleset
of training parameters.It is possiblethat the benefitof
filtering couldbe masledby a poorchoiceof parameters.
Therefore, we trainednetworks using 32 parametessets.
Fourlearningrates(0.05,0.1,0.2,0.4) werecrossedvith
two momentunvalueg0.0,0.9),two initial weightranges
(0.1, +£1.0), andtwo weightdecayvalues(0.0,0.0001).
Networksweretrainedon 1000randomlyselectedexam-
plesusing online learning, meaningthat weight updates
wereperformedaftereachexample.

Performancevasmeasuredy testingthe models abil-
ity to producethe correctmeaningfor eachof the nine
isolatedforms. The final performancén eachcondition,
averagedover 50 trials, is shavn in Table 3. Without fil-
tering, the network learnsbestwith smallinitial weights,
someweightdecay momentumandalargelearningrate.
With filtering, the network learnsbestwith a smalllearn-
ing rateandno momentum.But underno conditionsdid
filtering improve learning. Figure 7 shavs the averaged
learningprofileswith andwithout filtering usingtraining
parametersvith which the filtered networks performed
quitewell: noweightdecayor momentuminitial weights
+0.1, andlearningrate 0.05. Although they reachsim-
ilar final performancethe networks learnedmuch more
quickly andsmoothlywithoutfiltering.

One might argue that we have cheatedby applyinga
single layer network to the task becausesucha network
cannotlearnvery complex mappings,soit doesnt need
filtering to learnthis simpleone. Admittedly, if thetask
werenot sosimple,we would have useda larger network.
To test the possibility that a larger network will fail to
learnthe simple rule without filtering, we traineda two
layer, 9-9-9, feed-forward network using the sametask

11
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Table 3: Final performancdevels with a 9-9 network undervariousconditions. The left valuein eachpair is the
performancevithout filtering andtheright valueis the performancaewith filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4
0 0 +0.1 100.0 98.9| 100.0 98.4| 100.0 76.7 | 100.0 44.9
0 0 +1.0 85.6 77.3| 96.9 88.7| 98.7 75.6| 100.0 45.6
0 0.9 +0.1 100.0 33.3| 100.0 16.7| 100.0 4.4 )| 1000 3.3
0 0.9 +1.0 100.0 32.2| 100.0 15.8| 100.0 4.4| 100.0 3.3
0.0001 0 +0.1 100.0 99.6 | 100.0 97.6| 100.0 78.0 | 100.0 44.4
0.0001 0 +1.0 889 79.6| 97.1 89.3| 100.0 76.0| 100.0 46.4
0.0001 0.9 +0.1 100.0 42.2| 100.0 22.2| 100.0 5.6| 100.0 3.3
0.0001 0.9 +1.0 100.0 42.2| 100.0 22.0| 100.0 5.6| 100.0 3.1

Table4: Final performancdevels with a 9-9-9 network undervariousconditions. The left valuein eachpair is the
performancevithoutfiltering andtheright valueis the performancewith filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4
0 0 +0.1 00 11|420 22|929 89991 269
0 0 +1.0 60.2 142 | 722 416| 884 40.7| 884 333
0 0.9 +0.1 98.7 249|938 144|811 64196 24
0 0.9 +1.0 818 238|791 144|762 58| 411 24
0.0001 0 +0.1 00 11|356 22|940 7.6|99.6 26.9
0.0001 0 +1.0 66.0 10.0| 79.1 37.1| 93.1 47.1| 884 347
0.0001 0.9 +0.1 99.3 247|993 16.2| 996 69| 940 29
0.0001 0.9 +1.0 99.3 256|993 156|991 56991 36
andparameters.
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Figure7: Learningthe Goldowsky & Newport(1993)task
usingasinglelayerneuralnetwork.

As shown in Table 4, the two layer network doesnt
solve thetaskaseasilyasthe onelayer network. But un-
derseveraldifferentchoicesof parameterghenetwork is
ableto masteithetasknearlyall of thetime withoutfilter-
ing. The bestperformancechievedwith filtering, on the
otherhand,wasjust 47.1%correct. In only two cases—
with a small learningrate, small initial weights,and no
momentum—didhefilterednetworksperformbetterthan
the unfilteredones. But in thosecasesthe filtered net-
worksonly reachedanaverageperformancef 1.1%.

In summary the filtering mechanismproposedby
Goldowsky and Newport (1993)for this taskdid notim-
prove the performanceof either an effective takulation
stratgyy or two neuralnetwork models.Althoughtheran-
domfiltering mechanisnsometimessolatescorrectone-
to-one form/meaningpairs, it more frequently destrgys
thosepairs and isolatesincorrectones. This introduces
noisethat outweighsthe occasionabenefitand that can
be detrimentako learning.

12
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4 Kareev, Lieberman, and Lev

(1997)

Kareey, Lieberman,andLev (1997)beganby reiterating
atheoreticabointaboutsampledlistributionswhich was
first raisedin Kareey (1995). If a distribution over two

correlatedeal-valuedvariabless sampledepeatedlythe

expectedmedianof the obsenedcorrelationdn the sam-
plesincreasessthe sizeof the sampledecreaseOnthe

basisof this fact, Kareev et al. suggestedhat humans
estimatingcorrelationsin obsened eventswill be better
at detectingthosecorrelationsf they have limited work-

ing memory andthuspresumablyely onsmallerremem-
beredsamplesn formulatingtheirjudgments.

In thefirst experiment participantaveregiven128en-
velopes,eachcontaininga coin. Envelopeswere either
red or greenandthe coin inside was either marked with
an X or anO. Participantsopenedervelopesone-by-one
in randomorderandeachtime tried to predictthe type of
coin basedon the envelopes color. The envelopes’con-
tentsweremanipulatedo producetrue color/markcorre-
lations rangingfrom -0.6 to 0.6. The eight participants
in eachconditionweregroupedbasedon the resultsof a
single-trialdigit-spantestof working memory Response
correlationwas computedfor eachparticipantusing the
matrix of ervelopecolorsandmark predictions. Kareev
etal. foundthatthe low-spanparticipantgendedto have
larger responsecorrelationsand to have more accurate
overallpredictions.

This is certainlyan interestingresult, but the theoreti-
cal explanationoughtto be reconsideredTo begin with,
the authorsstressedhe factthat medianobsened corre-
lation increasesas samplesize decreases.That is, with
a smallersample,obsenershave a higherprobability of
encounteringa correlationthatis largerthanthe true cor
relation. This is mainly anartifactof the increasedoise
resultingfrom small samples.On the basisof increasing
median,Kareer et al. concludedthat, “The limited ca-
pacityof working memoryincreaseshe chancedor early
detectionof a correlation...[A] relationship,if it exists,
is morelikely to be detectedthe smallerthe sample”(p.
279). Thus,the authorsseento be equatingmedianesti-
mationwith the ability to detectary correlationwhatso-
ever. However, they do not offer an explicit accountof
how participantsmight be solving the correlationdetec-
tion or coin predictiontask.

The median correlation happensto be one measure
computableover aseriesof samples. But thereareother
measurethatmaybemoredirectly applicableo theprob-
lem of detectinga correlation,suchasthe mean andnot
all measureicreasan magnitudewith smallersamples.

"The term sampleis usedhereto referto a setof obsenations,or
examplespotjustasingleobseration.

The meancorrelationdiminisheswith decreasingample
size. But anindividual participantis not encounteringa
seriesof sampleshut just one sample,so the medianor
meancomputedover multiple sampless not necessarily
relevant.

So what is an appropriatemodel of how participants
are solving the task, and how is this model affected by
samplesize? Signal detectiontheory typically assumes
thathumanobsenershave athresholdabove which a sig-
nal is detected.In this case,we might presumethat the
signalis thepercevedcorrelationbetweerervelopecolor
andcointype,andthatthecorrelation whethermpositive or
negative, is detectabléf its magnitudes above a partici-
pantsthreshold.If participantsarebasingtheir responses
in thecoin predictiontaskon a signaldetectionprocedure
involving afixedthresholdwe mustaskwhatis theproba-
bility thata sampleof size N from a distributionwith true
correlationC hasan obsened correlationgreaterthana
giventhreshold?

It seemgeasonabléo supposehatthe typical human
thresholdor detectingcorrelationsn smallsamplegprob-
ably falls between0.05and 0.2, althoughit presumably
variesbasedon taskdemands.Figure 8 shows the prob-
ability that a small samplehasan obsened correlation
above 0.1 asa function of the size of the sampleandthe
strengthof the true correlation. The datain this experi-
mentinvolved pairs of real-valuedrandomvariables. A
desiredcorrelation,C, was achieved by generatingthe
valuesasfollows:

a = rand()

b=Ca+ +v1-C?rand()

where rand() producesa randomvalue uniformly dis-
tributedin the range[-1,1]. 1 million trials were con-
ductedfor eachpairing of samplesizeandcorrelation.

Clearly, for therangeof parametersoveredthechance
thatthe obsened correlationis greaterthanthresholdin-
creasesnonotonicallywith samplesize. Larger samples
leadto a greaterchanceof detectinga correlation. One
may disagreewith the arbitrary choiceof 0.1 for the de-
tectionthreshold but the samepenaltyfor small samples
is seenwith a valueof 0.2, providedthe true correlation
is greaterthan0.2, andthe effect becomesven stronger
with thresholdselow 0.1. Thus,thefactthatthe median
obsened correlationincreaseswith small samplesizes
doesnot bearon whatis arguablya reasonablenodel of
humancorrelationdetection.

Anotherimportantissueis that the samplingdistribu-
tion measuresliscussedby Kareer etal. werefor pairsof
real-valuedvariablesput the experimentshey conducted
involvedbinaryvariables Do thesameprinciplesapplyto
smallsamplef binarydata?Figure9 showvs the median
obsenedcorrelationin smallsamplef binarydata,asa
function of the samplesize andthe true correlation. Al-
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Figure 8: The probability that the obsened correlation
valueis greaterthan0.1 (andthuspresumablydetectable)
asafunctionof samplesizeandtrue correlation(C).

thoughmediancorrelationdecreaseasafunctionof sam-
ple sizefor real-valueddata, mediancorrelationdoesnt

seemto vary in ary systematiavay asa functionof sam-
ple sizefor binary data. Thereis simply more variabil-

ity in the small samples. But again, mediancorrelation
valueis notnecessarilyndicative of theeaseof detection.
As with real-valueddata,the probabilitythatan obsened
correlationis greaterthan somesmall thresholdtendsto

increasewith largersamplesf binarydata.

But it may be possiblethat thesestatisticalmeasures
don't accuratelyreflectthe power of small samplesin a
practicalcontext. Thereforewe designecda simplemodel
to performthe envelope/cointaskusingvarying levels of
working memory The modelwasintendedto reflectthe
mannerin which Karees et al. seemto imply humans
might be solvingthis task. The modelsimply remembers
the contentof thelast NV cardsof eachcolor andchooses
the coin that was more frequentin that sample. If the
coinswere equally frequentin the sample,the choiceis
random.The modelwasrunwith threesamplesizes 5, 9,
and13, meanto reflectsmall,medium,andlargeworking
memorycapacityandwasrun 1000timeson eachof the
14 distributional conditionsusedby Kareey, Lieberman,
andLev (1997). 7 of theseconditionsweresymmetricin
thatthey usedan equalnumberof X’s andO’s and7 did
not satisfy this constraintand were termedasymmetric.
Eachsymmetricconditionhada correspondingaisymmet-
ric onewith approximatelythe sameervelope/coircorre-
lation. The correlationbetweenthe models’ predictions
andthe ervelopecolor wascomputedn the sameway as
for theexperimentabparticipants.

Figure 10 shows the predictioncorrelationvaluesasa
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Figure9: The medianobsenedcorrelationin smallsam-
plesof binary data,asa function of samplesizeandtrue
correlation(C).

functionof actualcorrelationfor the threeworking mem-
ory levels, with resultsin the correspondingsymmetric
andasymmetricconditionsaveraged. The identity base-
line is providedasa referenceput notethatoptimal per
formancein this taskhasnothingto do with matchingthe
actualcorrelationvalues. An optimal predictorwill al-
wayspredictthe morelik ely coin, whetherthe actualcor-
relationis 0.1 or 0.9. Contraryto Kareey et al.’s predic-
tion, the larger samplesizeresultsin largerresponseor-
relations,notsmallerones.Figure11 givesthe prediction
accurag asafunctionof correlationandwindow size.Al-
thoughthe differenceis fairly small,largerwindow sizes
consistentlyoutperformedhe smallerones.

Therefore,althoughthe resultsof the first experiment
in Kareey, Lieberman,and Lev (1997) are ratherinter-
estingand desere replicationand explanation,thesere-
sultscannotbe attributedto the effectsof small samples
on perceved correlation. The probability of observinga
correlationstrongerthan a relatively sensitve detection
thresholdis lower with small samplesizesand the me-
dianobsenedcorrelationvaluewith binary datadoesnot
changesystematicallyith samplesize.A simplepredic-
tion modelthatrelieson sample®f varyingsizeperforms
betterwith largersamplesWhile it is truethatthis model
doesnot appearto fully capturehumanperformancen
this task, the relevant point is that the effects of small
samplesizeson perceved correlationdo not adequately
explainthe empiricalfindings.

Thesecondxperimentreportecby Kareey, Lieberman,
andLev (1997)alsodoesnot seemto fully supporttheir
theory In this case participantaverenotblockedby digit
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Figure 10: The correlationbetweenervelopecolor and
the models’predictionsof coin markingasa function of
the actualcorrelationand the model's memorywindow
size.
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Figure11: The predictionaccurag asa function of the
actualcorrelationandthe model's memorywindow size.

spanbut were given samplesf varying size uponwhich
to basea prediction. The sampleswere eitherfully visi-
ble throughoutheprocesor werepresentegequentially
and were unavailable in formulating the prediction. In
this case,the variableswere real-valued,ratherthan bi-
nary. The resultsindicatedthat when sampleswere ab-
senttherewasbetterperformancevith thesmallsamples
thanwith themediumor largeones.Butwhenthesamples
were present,performanceincreasedwith samplesize.
This latter resultis inconsistentwith the predictionthat
smallsampleshouldstatisticallymagnifycorrelations If
thatweretrue,largersampleswould leadto worseperfor
mance gspeciallyif thesamplesarepresentThefactthat
participantsviewing sequentiasamplegperformedbetter
with smalleronesis indeedinteresting but cannotbe ex-
plainedby a statisticalpropertyof samplesizeitself.

5 Cochran, McDonald, and Parault
(1999)

Much of the empirical supportfor the less-is-morehy-
pothesisderives from the study of AmericanSign Lan-
guage(ASL). Newport (1990)obsenedthatlate learners
of ASL tendto make more morphologicalerrorsin the
productionof verbsthando earlylearners While interest-
ing, it is notclearto whatthis finding shouldbeattributed.
Theproblemsncurredby latelearnersouldbedueto de-
activationof alanguageacquisitiondevice, greatercogni-
tive capacity differenttypesor degreesof exposure,or a
variety of otherfactors.CochranMcDonald,andParault
(1999) soughtto provide empirical evidencesupporting
theideathatcognitive limitations canactuallyleadto bet-
ter learningof ASL verbs. They conductedhreeexper
imentsin which participantsunfamiliar with ASL were
taughtsomesentencesind thentestedin their ability to
produceeitherthe sameor novel ASL sentences.

In the first two experiments,participantswere taught
16 verbs. Eachverbwasencounteredh the context of a
single sentenceijn which eitherthe subjectwas*“l” and
the objectwas*you”, or vice-versa.Six of theverbsused
congruentagreementin which the direction of the sign
was from the verb’s subject(eitherthe signeror the ad-
dresseedo theverb’sobject. Two of theverbsusedncon-
gruentagreementin which the directionof the signwas
from objectto subject.Four nonagreemenverbsrequired
astaticdirectionof motion,whichwaseitheralwaysaway
from or alwaystowardthe signer Thelastfour verbshad
adirectionof motionalignedvertically, eitherup or down.

Participantswereexposedo eachverbin asinglecon-
text, with half of the verbsin eachcondition using the
subject’l” andhalf usingthesubject'you”. The16study
sentencesvere obsenred threetimesin the first experi-
mentandeighttimesin thesecondxperiment.In orderto
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placea load on working memory half of the participants
performedatone-countingaskduringtraining. Thiswas
known astheload condition. Participantawverethentested
on the 16 familiar sentencesswell asthe 16 novel sen-
tencescreatedby reversingthe subjectandobject.

CochranMcDonald,andParault(1999)foundthatpar
ticipantsin the no-load condition producedthe familiar
sentencedbetter overall and performedbetter on famil-
iar and novel non-agreementerbs. However, partici-
pantsin the no-load condition did not perform as well
on the agreemenverbsin novel sentences.They were
muchmorelik ely to producehesignin thesamedirection
thatthey learnedit, ratherthanreversingthe directionin
the new context. This wastakenasevidencethat“adults
learningundernormalconditionswerefailing to learnthe
internalstructureof thelanguageandweretherefordim-
ited in their ability to generalizeo new contets” (p. 30).

However, an alternatve readingof the datais thatpar
ticipantsin theload conditionweresimply notlearningas
well andperformedmorerandomlyduringtest. Not only
did load participantshave moremovementsn the correct
direction, they producedmore verbswith no movement
or, in thefirst experimentwith movementutsidethe axis
betweerthe signerandaddresseéelhefactthatloadcon-
dition participantshappenedo usethe correctmovement
more oftenin novel conditionscanbe attributedto their
generallymore noisy behaior, ratherthan their having
learnedto generalizéo novel conditions.

The main problemwith theseexperimentsis that par
ticipantsare expectedto learnthatthe movementof cer
tain verbsshouldagreewith sentenceontext whenthere
wasno basisfor sucha generalizatiorin the examplesto
which the participantshadbeenexposed.Eachverbwas
seenn justonecontext, with justonedirectionof motion,
andonly six of the 16 verbsunderwentcongruentagree-
ment. The evidenceto which the participantswere ex-
posedully supportghesimplerhypothesisthatdirection
of motionis anintrinsic, non-inflectecbartof the signfor
averh In fact,thisis thecorrectrule for half of theverbs
usedin the experiment.Giventhelack of any evidenceto
the contrary it seemanuch morereasonabldor partici-
pantsto surmisethat ASL permitsno agreementthanto
surmisethat someverbshave agreementsomehave in-
congruenagreementandsomehave no agreementThe
resultsin theseexperimentsare consistentwith the hy-
pothesighatparticipantdn the no-loadconditionlearned
thisveryreasonableule muchbetterthandid participants
in theloadcondition.

A true testof generalizatiorability must provide the
learnerwith somesupportfor the validity of the expected
generalizationHad participantsxperiencedsomeagree-
mentverbsusedwith differentmotionsin differentcir-
cumstancesthey would have somebasisfor expecting
thatagreemenplaysarole in ASL. A secondactorbias-

ing the participantsagainsformulatingthe desiredgener
alizationwasthat, unlike in ASL, pronounswere explic-
itly producedin all training sentences.Languageswith
strongverb inflection, suchas Spanish,often drop first-
andsecond-persopronounspecausehey corvey redun-
dantinformation. Becausesuchpronoundrop wasnot a
featureof thetraining sentencedearnersaremorelikely
to assumehatpronominalinformationis notredundantly
corveyed in the verb form. In summary the first two
experimentsof this study essentiallyfound that partici-
pantgtrainedto performonereasonablgeneralizationlid
poorly whentestedon a different,more comple, gener
alization.

The third experimentconductecby Cochran,McDon-
ald,andParault(1999)testedhelearningof ASL motion
verbs,comparingparticipantswho weretaughtto mimic
whole signsto thosewho weretaughtto mimic just one
partof eachsign,eithertheform or the motion,atatime.
During training, signsfor a certaintype of actormoving
in a certainway were pairedwith a handmovementin-
dicatingthe pathof motion. For someverbs,the motion
signis producedatthesametime astheverb,but for other
verbsthey are producedn sequenceDuring testing,all
verbswerepairedwith all pathsigns.

Overall therewasno differencein performanceon the
studiedor thenovel signsbetweerthe“whole” and“part”
learnersTherewasanunexplainedtradeof, in thatwhole
learnerddid betterif the partsof the new signwereto be
performedsequentiallyandworseif they wereto be per
formedsimultaneouslyTheonly otherdifferencevasthe
mauginally significanttendenyg for whole-practicepartic-
ipantsto producemore frozen signs® which could be a
causeor effect of the otherdifference. If anything, this
study seemdo provide strongevidencethat learningin-
dividual partsof signsis not, overall, of significantben-
efit. Althoughwhole-signlearnersproducedmorefrozen
signs,they performedbetterin otherrespectspalancing
the overall performance. Someavhat disturbingly how-
ever, more participantswere thrown out for inadequate
performanceor unscorabledata from the part-learning
group. One personin the whole-sign condition was
thrown out for unscoreablelataand9 peoplein the part-
sign conditionwerereplaced threefor badperformance
andtwo for unscoreablalata. Acrossthe threeexperi-
ments threeparticipantsverediscardedrom theno-load
andwhole-signconditionsfor performanceor scoreabil-
ity reasonscomparedvith 12 participantsn theloadand
part-signconditions.In experimentof this sortinvolving
a direct comparisorbetweentraining methods eliminat-
ing participantsfor performancereasongluring training
hasthe clearpotentialto biasthe averagetestingperfor
mance. If participantsmustbe removed from one con-

8A frozensignwasa new signthatcontainedan unnecessargartof
apreviously studiedsign.
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dition for performanceeasonsan equalnumberof the
worst performersin the other conditionsshould be re-
movedaswell, althoughthis still may notfully eliminate
thebias.

6 Kersten and Earles(2001)

Kersten and Earles (2001) conductedthree language
learningexperimentsvhichcomparedearningin astaged
inputconditionto learningin afull-sentencecondition.In
eachexperiment participantssiewed eventsin which one
bug-like objectmovedtowardsor away from anotheysta-
tionary, bug-like object. In the full-sentencecondition,
eachevent was pairedwith the auditory presentatiorof
a three-vord sentence. The first word correspondedo
the appearancef the moving bug and endedin “—ju”.
Thesecondvord describedhemannerof motion—either
walking with legs togetheror alternating—andended
in “~gop”.? The third word describedthe direction of
walking—towardsor away from the stationarybug—and
endedn “-tig".

In the first two experiments,half of the participants
heardcompletesentencegor the whole training period.
The otherpatrticipantdnitially heardjustthefirst (object)
word for athird of thetrials, thenthefirst two words,and
finally all threewords. In the testingperiod, participants
were shavn two eventsthat varied on a single attribute
and heardeitheran isolatedword (correspondingo the
manipulatedattribute) or a sentence They wereto iden-
tify theeventthatcorrectlymatchedheword or sentence.

The mostimportantfinding in theseexperimentswas
significantly betterperformancepverall, for participants
in the stagedinput condition. Kerstenand Earlesinter-
pretedthis as evidencein favor of the less-is-morehy-
pothesis.However, one shouldexercisesomecautionin
drawing conclusionsfrom theseexperiments. Although
therewas an overall advantagefor startingsmall, if one
testsperformanceon object words, mannerwords, and
pathwordsindependentlytheeffectis only significantfor
objectwords. Thus,theresultsareconsistentvith the hy-
pothesighatstartingsmallwasonly beneficialin learning
themeaningof theobjectwords,i.e.,thosewordstrained
in isolationfor thefirst third of thetrials.

Kerstenand Earlessoughtto rule out a slightly differ-
ent, but equallyviable, hypothesis—thathe effect relies
on the fact that the objectwords, as opposedo manner
or path,werelearnedfirst. Therefore,n the third exper
iment, participantsn the stagedconditionfirst heardthe
last (path) word, thenthe lasttwo words (mannefpath),
and finally all threewords. Again therewas a signifi-
cantoverall advantagefor the stagedinput condition. In

9In thefirst experiment someparticipantsheardobject-mannepath
word orderandothersheardobject-path-manner

this case pathwordswerelearnedbetterthanobjectand
mannerwordsin both conditions. Although the overall
adwantagefor the startingsmall conditionreachedsignif-
icance,none of the testsisolating the threeword types
were significant. Theseresultsthereforedo not rule out
the hypothesisthat participantsin the stagedinput con-
dition wereonly betteron the wordstrainedin isolation.
Neverthelessit is possiblethattheseeffectswould reach
significancewith moreparticipants.

The third experimentalso addeda testof the partici-
pants’sensitvity to morphology Novel wordswerecre-
atedby pairing an unfamiliar stemwith one of the three
familiarword endingqg—ju, —gop,or —tig). Eachwordwas
first pairedwith aneventthatwasnovelin all threeimpor-
tant dimensions.Participantswere then shovn a second
eventthatdifferedfrom thefirstin asingledimensiorand
wereinstructedto respond'Y es” if the secondeventwas
alsoan exampleof the new word. In otherwords,partic-
ipantsrespondedY es” if the two eventsdidn’t differ on
the featureassociatedvith the word ending. Kerstenand
Earlesagainfounda significantadvantageor the starting
smallcondition.

However, thereis somereasonto questionthe results
of this experiment.With the path-word ending,therewas
clearlyno differencebetweerthetwo conditions.In three
of thefour otherconditions participantgperformedoelon
chancdevels,significantlysoin oneof them.Thefinding
of significantly belov chanceperformancdeadsone to
suspecthat participantsmay have beenconfusedby the
taskandthatsomeparticipantamay have incorrectlybeen
responding‘Yes” if the eventsdid differ on the feature
associateavith theword ending.

Evenif we acceptthat therewas an across-the-board
adwantagefor the stagedinput conditionin theseexper
iments,we shouldbe cautiousin generalizingto natural
languagdearning. The languageusedin this studywas
missing a numberof importantfeaturesof naturallan-
guage.Word orderandmorphologywereentirely redun-
dantand,moreimportantly corveyedno meaning.Words
always appearedn the samepositionin every sentence
and were always pairedwith the sameending. In this
simplelanguagetherewasnt a productive syntaxor mor-
phology justacorventionalword order Participantsavere
thusfreeto usestratgiessuchasignoringword orderand
morphologicalinformation, much asthey learnedto ig-
noremeaninglessletailsof the events.

Participantsin the full sentenceconditionwerethere-
fore at a potentialdisadwantage. Any effective, general
learningmechanisnin a similar situationwould devote
time andresourceso testingtheinformationcarriedin all
aspectof the eventsand sentencesincluding morphol-
ogy andword order In this casethosefeatureshappened
to corvey no additionalinformationbeyondthatprovided
by the word stemsthemseles, placing participantswho
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paid attentionto word order and morphologyat a dis-
adwantage. However, thesefactorsplay critical rolesin
shapingthe meaningof naturallanguagesentencesand
devoting time and resourcego learningthemis useful,
andevennecessaryThestagednputlearnerontheother
hand,will have tradedoff exposureto syntaxfor more
exposureto individual words and their meaningswhich
is not clearly advantageous.A strongertestof the im-
portanceof stagednputwould beto measure&omprehen-
sionor productionof whole,novel sentencem alanguage
with someaspect®f meaningcarriedexclusively by syn-
taxandmorphology

Perhapgellingly, somestudiescited by Kerstenand
EarlescomparingchildrenlearningFrenchin immersive
programswith andwithout prior exposureto moretradi-
tional, elementaryFrench-as-a-second-languacpurses
found either no differenceor an advantagefor children
in the purelyimmersive programgShapsor& Day, 1982;
Day & Shapson1988; Geneseel981). Althoughthese
studiesmay not have adequatelcontrolledfor ageof ex-
posure,intelligence,or motivational factors,it certainly
is suggestie that stagednput may be lesseffective than
immersionin learningnaturallanguages.

A final point of criticism of the Kerstenand Earles
(2001)paperis their desireto equatethe effectsof staged
input with thoseof internal memorylimitations. There
is little reasonto believe that thesetwo factorswill have
similar effects. Teachingthe meaningof isolatedwords
is boundto be helpful, providedthatit is only a supple-
mentto exposureto completdanguageis relatively noise
free, and makes up a relatively small percentagef lin-
guistic experience.However, memorylimitations do not
resultin thesamesimplepairingof wordsandtheirmean-
ings. At best,memorylimitations have the effect of pair-
ing isolatedwordsor phraseso noisy, randomlysampled
portionsof a complex meaning. The actualpart of the
complex meaningcontributed by the isolatedword may
be partially or completelylost and someextraneousin-
formationmay beretained.Learningthe correctpairings
of wordsto meaningds no easietin this casethanwhen
facedwith thefull, complex meaning.

A moreappropriatethoughstill not entirely sufiicient,
testof the benefitof memorylimitationsin the context of
KerstenandEarless designwould beto testrandomlyse-
lectedwordsin the isolatedword condition, ratherthan
alwaysthefirst or lastword of the sentenceTheseshould
bepairedwith scenesvith randomlyselectedletails,such
astheidentity of the moving objector the locationof the
stationaryobject,obscuredFurthermoretestsshouldnot
be performedon familiar sentencebut on novel ones,as

the presumedeffect of poor attentionor working mem-
ory, wasbeneficialin the comprehensionr productionof
novel sentences.

The actual claim of Newport's less-is-morehypothe-
sis doesnot concernstagedinput. It is that memoryor
other internal limitations are the key factorin enabling
childrento learnlanguagemoreeffectively. Evidencefor
or againsthebenefitof stagednputshouldbeclearlydis-
tinguishedrom evidenceconcerningheeffectof internal
cognitive impairments.

7 General Discussion

We believe that studyingthe way in which connectionist
networks learnlanguagess particularly helpful in build-
ing anunderstandingf humanlanguageacquisition.The
intuition behindthe importanceof startingwith properly
chosersimplifiedinputsis thatit helpsthe network to fo-
cusimmediatelyonthemorebasic,local propertiesof the
languagesuchaslexical syntacticcategoriesand simple
noun-\erbdependenciefOncethesearelearnedthe net-
work can more easily progressto hardersentencesnd
furtherdiscoveriescanbebasedntheseecarlierrepresen-
tations.

Our simulationresultsindicate ,however, that suchex-
ternalmanipulationof the training corpusis unnecessary
for effective languagdearning,givenappropriatdraining
parametersThereasonwe believe, is thatrecurrentcon-
nectionistnetworks alreadyhave aninherenttendeng to
extractsimpleregularitiesfirst. A network doesnot begin
with fully formed representationand memory; it must
learnto represenaindremembeusefulinformationunder
the pressureof performingparticulartasks,suchasword
prediction. As a simplerecurrentnetwork learnsto rep-
resentinformationaboutan input usingits hiddenunits,
thatinformationthenbecomeswvailableascontext when
processinghe next input. If this context providesimpor-
tant constraintson the predictiongeneratedy the sec-
ond input, the contet to hiddenconnectiongnvolvedin
retainingthat informationwill be reinforced,leadingthe
informationto be availableascontext for the third input,
andsoon.

In this way, the network first learnsshort-rangalepen-
denciesstartingwith simpleword transitionprobabilities
for which no deepercontext is needed At this stage the
long-rangeconstraintseffectively amountto noisewhich
is averagedutacrossalargenumberof sentencesis the
short-dependencieare learned,the relevant information
becomeswvailablefor learninglongerdistancedependen-

the potentialproblemin startingwith completesentences cies. Very long-distancalependenciesuchasgrammat-

is thatadultswill memorizethemaswholesandwill not
generalizewell to novel ones. It would be quite inter-
estingif initial training of this form, which is morelike

ical constraintsacrossmultiple embeddedclauses,still
present problemfor this type of network in ary training
regimen.Informationmustbemaintainedacrosgheinter-
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veningsequencéo allow the network to pick up on such
adependeng However, theremustbe pressurdo main-
tain that information or the hidden representationsvill
encodemorelocally relevantinformation. Long-distance
dependenciearedifficult becausahe network will tend
to discardinformation aboutthe initial cue beforeit be-
comesuseful. Adding semanticdependencieto embed-
ded clausesaids learningbecausehe network then has
anincentie to continueto representhe main noun, not
justfor thepredictionof themainverb,but for the predic-
tion of someof the interveningmaterialaswell (seealso
Cleeremanstal., 1989)1°

It might be thoughtthat startingwith simplified inputs

alanguageo acquirenative-level performancen phono-
logical skills, andwhy only a particulartype of retraining
regimen may prove effective (seealso Merzenichet al.,
1996; Tallal et al., 1996). Thus, thereare a numberof
demonstrationthatconnectionishetworksmaynotlearn
as effectively whentheir training environmentis altered
significantly asis thecasen theincrementatrainingpro-
cedureemployedby Elman(1991).

There has beenmuch debateon the extent to which
children experience syntactically simplified language
(see.e.g.,Richards,1994; Snow, 1994,1995,for discus-
sion). While child-directedspeechs undoubtedlymarked
by characteristiprosodicpatternsthereis alsoevidence

would facilitatethe acquisitionof the local dependencies thatit tendsto consistof relatively short,well-formedut-

so that learning could progressmore rapidly and effec-
tively to handlingthe longerrangedependenciesThere
is, however, a costto alteringthe network’s training en-
vironmentin this way. If the network is exposedonly to
simplifiedinput, it maydeveloprepresentationshichare
overly specializedor capturingonly local dependencies.
It then becomeddifficult for the network to restructure
theserepresentationgrhen confrontedwith harderprob-
lemswhosedependenciearenotrestrictedo thosein the
simplified input. In essencethe network is learningin
anernvironmentwith a nonstationaryrobability distribu-
tion over inputs. In extremeform, suchnonstationarity
canleadto so-calledcatastophic interference in which
trainingexclusively onanew taskcandramaticallyimpair
performancen apreviously learnedaskthatis similarto
but inconsistentvith the new task(see,e.g.,McClelland,
McNaughton,& O’Reilly, 1995; McCloskey & Cohen,
1989).

A closely relatedphenomenorhasbeenproposedby
Marchman(1993)to accountfor critical periodeffectsin
the impact of early brain damageon the acquisitionof
Englishinflectional morphology Marchmanfound that
thelongera connectionissystemwastrainedon the task
of generatingthe pasttenseof verbs,the poorerit was
atrecoveringfrom damage.This effect was explainedin
termsof the degreeof entrendymentof learnedrepresen
tations: As representationsecomemore committedto a
particularsolutionwithin the premorbidsystemthey be-
comelessableto adaptto relearninga new solutionafter
damage.More recently McClelland (2001)and Thomas
and McClelland (1997) have usedentrenchment-lik ef-
fectswithin a Kohonennetwork (Kohonen,1984)to ac-
countfor the appareninability of non-natve spealersof

101t shouldbe pointedout that the bias towards learning short- be-
fore long-rangedependenciess not specificto simple recurrentnet-
works; backpropagation-througiwte andfully recurreninetworks also
exhibit this bias. In thelatter case Jearninglong-rangedependencieis
functionally equivalentto learningan input-outputrelationshipacrossa
largernumberof intermediaterocessindayers(Rumelharetal., 1986),
whichis moredifficult thanlearningacrosdewer layerswhenthe map-
pingis simple(seeBengioetal., 1994;Lin etal., 1996).

terancesand to have fewer complex sentencesnd sub-
ordinateclausegNewport, Gleitman,& Gleitman,1977;
Pine,1994). The studyby Newport andcolleaguess in-
structive here,asit is often interpretedas providing evi-
dencethat child-directedspeechis not syntacticallysim-
plified. Indeed theseresearcherbund noindicationthat
motherscarefully tunetheir syntaxto the currentlevel of
the child or that aspectsof mothers’speechstyleshave
a discernibleeffect on the child’s learning. Nonetheless,
it was clearthat child-directedutterancesaveraging4.2
words, were quite unlike adult-directedutterances av-
eragingl11.9 words. Although child-directedspeechin-
cluded frequentdeletionsand other forms that are not
handledeasily by traditionaltransformationaggrammars,
whetheror not thesesene ascompleities to the child is
debatable.

If childrendo, in fact, experiencesimplified syntaxit
might seemasif our findings suggesthat suchsimplifi-
cationsactually impedechildren’s languageacquisition.
We do not, however, believe thisto bethe case.The sim-
ple recurreninetwork simulationshave focusedon theac-
quisition of syntacticstructure(with somesemanticcon-
straints) whichis justa smallpartof theoveralllanguage
learningprocessAmongotherthings,the child mustalso
learnthe meaningsof words, phrasesand longer utter
ancesin the language. This processis certainly facili-
tatedby exposingthechild to simpleutterancesvith sim-
ple, well-definedmeaningsWe supportNewportandcol-
leaguestonclusiorthattheform of child-directedspeech
is governedby adesireto communicatavith thechild and
not to teachsyntax. However, we would predictthatlan-
guageacquisitionrwould ultimatelybehinderedf particu-
lar syntacticor morphologicatonstructionsvereavoided
for extendedperiodsin theinputto eitherachild or adult
learner

But themainimplicationof theless-is-mordaypothesis
is not that stagedinput is necessarybut that the child’s
superiofanguagdearningability is a consequencef the
child’s limitations. This might beinterpretedn a variety
of ways. Goldowsky andNewport (1993),Elman(1993),
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Kareey, Lieberman,and Lev (1997), and Cochran,Mc-
Donald,and Parault(1999) suggesthatthe power of re-
ducedmemoryis thatit leadsto informationlosswhich
canbe beneficialin highlighting simple contingenciesn
the ervironment. This, it is suggestedencouragesina-
lytical processingover rote memorization. We have ar-
gued,to the contrary thatin a rangeof learningproce-
dures,from simple decisionmaking modelsto recurrent
connectionishetworks, suchrandominformationlossis
of nobenefitandmaybe harmful. Althoughit sometimes
hasthe effect of isolating meaningfulanalyticalunits, it
moreoften destrgs thoseunits or createdalsecontigen-
cies.

Anothertake on the less-is-morehypothesisis that a
learningsystemcanbenefitby beingdifferentially sensi-
tive to local informationor simple input/outputrelation-
ships. This we do not dery. In fact, it seemdifficult to
conceve of aneffective learningprocedurehatis notbet-
ter ableto learnsimplerelationships A relatedargument
is that whenthe mappingto be learnedis componential,
a learningprocedurespecializedfor learningsuchmap-
pings, asopposedo onespecializedor rote memoriza-
tion, is to be preferred. This, too, we support. However,
we suggesthatneuralnetworks—andby possibleimpli-
cation,the humanbrain—arenaturally betterat learning
simpleor local contingenciesandregular, ratherthanarbi-
trary, mappingsButthisis trueof learningin experienced
networksor adults,justasit is true of learningin random-
izednetworksor children. Thegenerakhrchitectureof the
systemis the key factorthat enabledearningof compo-
nentiality, notthe child’s limited working memory

Simulatingpoorworking memoryby periodically dis-
rupting a network’s feedbackduring the early stagesof
learninghasrelatively little effect becauseat that point,
the network hasnot yet learnedto useits memoryeffec-
tively. As long asmemoryis interferedwith lessasthe
network develops,therewill continueto be little impact
on learning. In a sensegarly interferencewith the net-
work’s memoryis superfluousecausehe untrainednet-
work is naturallymemorylimited. Onemight saythatis
thevery pointof theless-is-moreargumentput it is miss-
ing avital componentWhile we accepthatchildrenhave
limited cognitive abilities, we don't seetheselimitations
asa sourceof substantialearningadvantageto the child.
Both are symptomsof the factthatthe child’s brainis in
an early stagein developmentat which its resourcesare
largely uncommitted,giving it greatflexibility in adapt-
ing to the particulartasksto whichit is applied.

7.1 Late Exposure and Second L anguages

Elman’s (1991, 1993) computationafindings of the im-
portanceof startingsmallin languageacquisition,aswell
as the other studiesreviewed here, have beeninfluen-

tial in part becauseghey seemedo corroborateempiri-
cal obsenationsthat languageacquisitionis ultimately
more successfuthe earlierin life it is begun (seeLong,
1990). While older learnersof either a first or a sec-
ond languageshaow initially fasteracquisition,they tend
to plateauat lower overall levels of achiezementthando
youngerlearners. The importanceof early languageex-
posurehasbeencited asan argumentin favor of either
aninnatelanguageacquisitiondevice which operatese-
lectively during childhood or, at least, geneticallypro-
grammedmaturationof the brain which facilitateslan-
guagelearningin childhood(Johnson& Newport, 1989;
Newport, 1990; Goldowsky & Newport, 1993). It has
beenarguedthatthefactthatlatefirst- or second-language
learnersdo not reach full flueng is strong evidence
for “maturationallyscheduledanguage-specifidearning
abilities” (Long, 1990,p. 259,emphasisn theoriginal).

We would argue, however, thatthe dataregardinglate
languageexposure can be explained by principles of
learningin connectionistnetworks without recourseto
maturationathange®r innatedevices. Specifically adult
learnersmay not normally achieve flueng/ in a second
languagébecauseheir internalrepresentationsave been
largely committedto solving otherproblems—including,
in particulay comprehensiomnd productionof their na-
tivelanguagdseeFlege,1992;Flege,Munro, & MacKay,
1995). Theaspectof anadult's secondanguagehatare
mostdifficult may be thosethatdirectly conflict with the
learnedpropertiesof the native language. For example,
learningthe inflectional morphologyof Englishmay be
particularlydifficult for adultspealersof anisolatinglan-
guage suchasChinesewhich doesnotinflect numberor
tense.

By contrastto the adult, the child ultimately achieves
a higherlevel of performanceon a first or secondlan-
guagebecauséhis or her resourcesare initially uncom-
mitted, allowing neuronsto be moreeasilyrecruitedand
the responseharacteristic®f alreadyparticipatingneu-
ronsto be altered.Additionally, the child is lesshindered
by interferencefrom prior learnedrepresentationsThis
idea,which accordswith Quartzand Sejnavski's (1997)
theory of neural constructivism is certainly not a new
one,but is onethat seemgo remainlargely ignored(al-
thoughseeMarchman,1993;McClelland,2001).On this
view, it seemsunlikely that limitations in a child’s cog-
nitive abilities are of significantbenefitin languageac-
quisition. While adults’ greatermemoryand analytical
abilitiesleadto fasterinitial learning,thesepropertiesare
notthemselesresponsibldor the lower asymptotidevel
of performancechieved, relative to children.

Along similar lines, the detrimental impact of de-
layedacquisitionof a first languagemay not implicate a
language-specifisystemthat hasshutdown. Rather it
maybethat,in theabsencef linguistic input, thoseareas
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of thebrainwhich normallybecomenvolvedin language
may have beenrecruitedto performotherfunctions(see,
e.g., Merzenich& Jenkins,1995, for relevant evidence
anddiscussion)While it is still sensibleo referto acrit-
ical or sensitve periodfor the acquisitionof languagejn
the sensethat it is importantto startlearningearly, the
existenceof a critical periodneednot connotelanguage-
acquisitiondevicesor geneticallyprescribednaturational
schedules.

Indeed similar critical periodsexist for learningto play
tennisor amusicalinstrument Rarelyif everdoesanindi-
vidual attainmasterfulabilities at eitherof thesepursuits
unlesshe or shebeginsat an early age. And certainlyin
the caseof learningthe pianoor violin, remarkableabil-
ities canbe achieved by late childhoodand are thus not
simply the resultof the mary yearsof practiceafforded
to thosewho startearly Onemight addthatno species
otherthanhumanss capableof learningtennisor the vi-
olin. Neverthelessye would not supposehattheseabili-
tiesrely upondomain-specifignnatemechanismsr con-
straints.

While generakonnectionisprinciplesmayexplainthe
overall patternof resultsin late languageearning,con-
siderablework is still neededo demonstrat¢hatthis ap-
proachis sufiicient to explain the rangeof relevant de-
tailedfindings. For example, it appearghatvocahularyis
moreeasilyacquiredthanmorphologyor syntax,andthat
secondanguagédearnershave variablesucces#n master
ing differentsyntacticrules(Johnson& Newport, 1989).
In future work, we intendto develop simulationsthatin-
cludecomprehensioandproductionof morenaturalistic
languagesin orderto extendour approacto addresshe
empiricalissuesin late second-languagkearningandto
allow usto modela wider rangeof aspectof language
acquisitionmoredirectly.

7.2 Conclusion

We seemto bein agreementvith mostproponentof the
less-is-morenypothesisn our belief that the properac-
count of humanlanguagelearning neednot invoke the
existenceof innate language-specifitearning devices.
However, we departfrom themin our skepticismthatlim-
ited cognitive resourcearethemselesof critical impor-
tancein the ultimateattainmenbf linguistic flueng. The
simulationsreportedhere, principally thoseinspired by
Elman’s language-learningvork, call into questionthe
proposalthat stagedinput or limited cognitive resources
arenecessanyor evenbeneficial for learning.We believe
thatthecognitive limitationsof childrenareonly advanta-
geousfor languageacquisitionto the extentthatthey are
symptomaticof a systemthat is unorganizedand inex-
periencedbut possessegreatflexibility andpotentialfor
future adaptationgrowth andspecialization.
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