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1 Introduction

A principalobservationin thestudyof languageacquisi-
tion is that peopleexposedto a languageaschildrenare
morelikely to achievefluency in thatlanguagethanthose
first exposedto it asadults,giving riseto thepopularno-
tion of acritical periodfor languagelearning(Lenneberg,
1967;Long,1990). This is perhapssurprisingsincechil-
drenhavebeenfoundto beinferior to adultsin mosttests
of othercognitiveabilities.

A variety of explanationshave beenput forth to ac-
count for the benefitof early languagelearning. Possi-
bly themostprevalentview is thatchildrenpossessaspe-
cific “languageacquisitiondevice” that is programmati-
cally deactivatedprior to or during adolescence(Chom-
sky, 1965;McNeill, 1970). Importantto this view is that
knowledgeor processesnecessaryfor effective language
learningare only available for a limited period of time.
But this theoryhastroubleaccountingfor continuedef-
fectsof age-of-acquisitionafteradolescence(Bialystok&
Hakuta,1999)andevidencethat someadult secondlan-
guagelearnersare still able to reachfluency (seeBird-
song,1999).

An alternativeaccountis providedby Newport’s(1990)
“less-is-more” hypothesis. Rather than attributing the
early languageadvantageto a specificlanguagelearning
device, this theorypostulatesthatchildren’s languageac-
quisitionmaybeaidedratherthanhinderedby their lim-
ited cognitive resources.Accordingto this view, theabil-
ity to learna languagedeclinesover time asa resultof
an increasein cognitive abilities. The reasoningbehind
this suggestionis that a child’s limited perceptionand
memorymay force the child to focuson smallerlinguis-
tic unitswhich form thefundamentalcomponentsof lan-
guage,asopposedto memorizinglarger units which are
lessamenableto recombination.While this is an attrac-
tiveexplanation,for sucha theoryto beplausible,thepo-
tentialbenefitof limited resourcesmustbedemonstrated
bothcomputationallyandempirically.

The strongestevidence for Newport’s theory comes
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from computationalsimulationsand empirical findings
of Elman(1991,1993),Goldowsky andNewport (1993),
Kareev, Lieberman,andLev (1997),Cochran,McDonald,
andParault(1999),andKerstenandEarles(2001).In the
currentchapter, weconsiderthesestudiesin detailand,in
eachcase,find seriouscauseto doubttheir intendedsup-
port for theless-is-morehypothesis.

� Elman(1991,1993)foundthatsimplerecurrentcon-
nectionistnetworks could learn the structureof an
English-like artificial grammaronly when“starting
small”—wheneitherthe training corpusor the net-
work’s memorywaslimited initially andonly grad-
ually mademore sophisticated. We show, to the
contrary, that languagelearning by recurrentnet-
worksdoesnotdependonstartingsmall;in fact,such
restrictionshinder acquisitionas the languagesare
mademorerealisticby introducinggradedsemantic
constraints(Rohde& Plaut,1999).

� We discussthe simple learningtask introducedby
Goldowsky and Newport (1993) as a cleardemon-
strationof theadvantageof memorylimitations.But
weshow thattheir filtering mechanismactuallycon-
stitutesasevereimpairmentto learningin bothasim-
plestatisticalmodelanda neuralnetwork model.

� Kareev, Lieberman, and Lev (1997) argued that
small samplesizes, possibly resulting from weak
short-termmemory, havetheeffectof enhancingcor-
relationsbetweentwo observablevariables.But we
demonstratethat the chancethata learneris ableto
detecta correlationactually improveswith sample
sizeandthat a simplepredictionmodel indeedper-
formsbetterwhenit relieson largersamples.

� Cochran,McDonald,andParault(1999)taughtpar-
ticipantsASL verbswith andwithoutadditionalcog-
nitive loadsandfound apparentlybettergeneraliza-
tion performancefor participantsin the load condi-
tion. But wearguethatthelearningtaskactuallypro-
vidednosupportfor theexpectedgeneralizationand
thattheno-loadparticipantssimply learnedthemore
reasonablegeneralizationmuchbetter.
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� Finally, we considerthe KerstenandEarles(2001)
findingsto provide little supportfor theless-is-more
hypothesisbecausethe task learnedby participants
in their experimentis unlike naturallanguagelearn-
ing in someimportantandrelevant aspectsand the
critical manipulationin their experiment involved
stagedinput, ratherthancognitive limitations.

In the final section, we considersomegeneralprinci-
ples of learning language-like tasksin recurrentneural
networks andwhat the implicationsfor humanlearning
might be. We thenbriefly discussan alternative account
for thelanguage-learningsuperiorityof children.

2 Elman (1991, 1993)

Elman(1990,1991)setout to provide anexplicit formu-
lation of how a generalconnectionistsystemmight learn
thegrammaticalstructureof alanguage.Ratherthancom-
prehensionor overtparsing,Elmanchoseto train thenet-
works to performword prediction. Although word pre-
diction is a far cry from languagecomprehension,it can
beviewedasa usefulcomponentof languageprocessing,
giventhatthenetwork canmakeaccuratepredictionsonly
by learningthe structureof the grammar. Elmantrained
a simple recurrentnetwork—sometimestermedan “El-
man”network—topredictthenext wordin sentencesgen-
eratedby anartificial grammarexhibiting numberagree-
ment, variable verb argumentstructure,and embedded
clauses.Hefoundthatthenetwork wasunableto learnthe
predictiontask—and,hence,the underlyinggrammar—
whenpresentedfrom theoutsetwith sentencesgenerated
by the full grammar. The network was,however, ableto
learnif it wastrainedfirst on only simplesentences(i.e.,
thosewithout embeddings)andonly later exposedto an
increasingproportionof complex sentences.

It thusseemsreasonableto concludethat stagedinput
enabledthe network to focus early on simple and im-
portantfeatures,suchasthe relationshipbetweennouns
and verbs. By “starting small,” the network had a bet-
ter foundationfor learningthemoredifficult grammatical
relationshipswhich spanpotentiallylong anduninforma-
tive embeddings.Recognizingthe parallel betweenthis
findingandtheless-is-morehypothesis,Elman(1993)de-
cidedto investigateamoredirecttestof Newport’s(1990)
theory. Ratherthanstagingtheinput presentation,Elman
initially interferedwith the network’s memoryspanand
then allowed it to gradually improve. Again, he found
successfullearningin thismemorylimited condition,pro-
viding muchstrongersupportfor thehypothesis.

2.1 Rohde and Plaut (1999) Simulation 1:
Progressive Input

Rohdeand Plaut (1999) investigatedhow the needfor
starting small in learning a pseudo-naturallanguage
would be affectedif the languageincorporatedmore of
theconstraintsof naturallanguages.A salientfeatureof
thegrammarusedby Elmanis that it is purelysyntactic,
in thesensethatall wordsof aparticularclass,suchasthe
singularnouns,were identical in usage.A consequence
of this is thatembeddedmaterialmodifying a headnoun
providesrelatively little informationaboutthesubsequent
correspondingverb. Earlierwork by Cleeremans,Servan-
Schreiber, andMcClelland(1989),however, haddemon-
stratedthatsimplerecurrentnetworkswerebetterableto
learnlong-distancedependenciesin finite-stategrammars
wheninterveningsequenceswerepartially informativeof
(i.e., correlatedwith) thedistantprediction.Theintuition
behindthis finding is that the network’s ability to repre-
sentandmaintaininformationaboutan importantword,
suchastheheadnoun,is reinforcedby theadvantagethis
informationprovidesin predictingwordswithin embed-
dedphrases.As a result, the nouncanmoreeffectively
aid in thepredictionof thecorrespondingverbfollowing
theinterveningmaterial.

Onesourceof suchcorrelationsin naturallanguageare
distributional biases,due to semanticfactors,on which
nounstypically co-occurwith which verbs.For example,
supposedogsoften chasecats. Over the courseof train-
ing, thenetwork hasencounteredchased moreoftenaf-
ter processingsentencesbeginningThe dog who... than
after sentencesbeginning with othernounphrases.The
network can,therefore,reducepredictionerrorwithin the
embeddedclauseby retainingspecificinformationabout
dog (beyond it being a singularnoun). As a result, in-
formation on dog becomesavailable to supportfurther
predictionsin thesentenceasit continues(e.g.,The dog
who chased the cat barked). Theseconsiderationsled
us to believe that languagessimilar to Elman’s but in-
volving weaksemanticconstraintsmight resultin lessof
anadvantagefor startingsmall in child languageacquisi-
tion. We beganby examiningtheeffectsof anincremen-
tal training corpus,without manipulatingthe network’s
memory. Themethodsweusedwereverysimilar, but not
identical,to thoseusedby Elman(1991,1993).

2.1.1 Grammar

Our pseudo-naturallanguagewasbasedon the grammar
shown in Table1, which generatessimplenoun-verband
noun-verb-nounsentenceswith thepossibilityof relative
clausemodificationof mostnouns.Relativeclausescould
beeithersubject-extractedor object-extracted.Although
thislanguageis quitesimple,in comparisonto naturallan-
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Table1: TheGrammarUsedin Simulation1

S � NP VI . | NP VT NP .
NP � N | N RC
RC � who VI | who VT NP| who NP VT
N � boy | girl | cat | dog | Mary | John |

boys | girls | cats | dogs
VI � barks | sings | walks | bites | eats |

bark | sing | walk | bite | eat
VT � chases | feeds | walks | bites | eats |

chase | feed | walk | bite | eat

Note: Transitionprobabilitiesare specifiedand additional
constraintsareappliedon topof this framework.

guage,it is nonethelessof interestbecause,in order to
make accuratepredictions,a network mustlearnto form
representationsof potentiallycomplex syntacticstructures
and rememberinformation, suchaswhetherthe subject
was singularor plural, over lengthy embeddings. The
grammarusedby Elmanwasnearlyidentical,exceptthat
it hadone fewer mixed transitivity verb in singularand
plural form, andthe two propernouns,Mary andJohn,
couldnot bemodified.

In our simulation,several additionalconstraintswere
appliedon topof thegrammarin Table1. Primaryamong
thesewasthatindividualnounscouldengageonly in cer-
tainactions,andthattransitiveverbscouldactonlyoncer-
tain objects(seeTable2). Anotherrestrictionin the lan-
guagewasthatpropernounscouldnotacton themselves.
Finally, constructionswhich repeatan intransitive verb,
suchasBoys who walk walk, weredisallowed because
of redundancy. Theseso-calledsemanticconstraintsal-
ways appliedwithin the main clauseof the sentenceas
well aswithin any subclauses.Although numberagree-
mentaffectedall nounsandverbs,thedegreeto whichthe
semanticconstraintsappliedbetweenanounandits mod-
ifying phrasewascontrolledby specifyingtheprobability
thattherelevantconstraintswouldbeenforcedfor agiven
phrase.In this way, effectsof the correlationbetweena
nounandits modifying phrase,or of thelevel of informa-
tion the phrasecontainedaboutthe identity of the noun,
couldbeinvestigated.

2.1.2 Network Architecture

Thesimplerecurrentnetwork usedin bothElman’ssimu-
lationsandin the currentwork is shown in Figure1. In-
putswererepresentedaslocalistpatternsor basisvectors:
Eachword wasrepresentedby a singleunit with activity
1.0,all otherunitshaving activity 0.0.Thisrepresentation
waschosento deprivethenetwork of any similarity struc-
tureamongthewordsthatmight provide indirectcluesto
their grammaticalproperties.The same1-of-n represen-

Table2: SemanticConstraintson VerbUsage

Intransitive Transitive Objects
Verb Subjects Subjects if Transitive

chase – any any
feed – human animal
bite animal animal any
walk any human only dog
eat any animal human
bark only dog – –
sing humanor cat – –
Note: Columns indicate legal subjectnouns when verbs
areusedintransitively or transitively andlegal objectnouns
whentransitive.

CONTEXT
�

OUTPUT
�

26
�

HIDDEN70
�

INPUT26
�

10

10

copy

Figure1: Thearchitectureof thenetwork usedin thesim-
ulations.Eachsolidarrow representsfull connectivity be-
tweenlayers,with numbersof units next to eachlayer.
Hidden unit statesare copied to correspondingcontext
units(dashedarrow) aftereachword is processed.

tationwasalsousedfor outputs,whichhastheconvenient
propertythattherelativeactivationsof multiplewordscan
berepresentedindependently.

On eachtime step,a new word waspresentedby fix-
ing the activationsof the input layer. The activity in the
mainhiddenlayerfrom theprevioustimestepwascopied
to the context layer. Activation thenpropagatedthrough
the network, as in a feed-forwardmodel,suchthat each
unit’sactivationwasa smooth,nonlinear(logistic,or sig-
moid) functionof its summedweightedinput from other
units.Theresultingactivationsover theoutputunitswere
thencomparedwith their targetactivations,generatingan
errorsignal. In a simplerecurrentnetwork, errorsarenot
back-propagatedthroughtime (cf. Rumelhart,Hinton, &
Williams, 1986) but only throughthe currenttime step,
althoughthis includesthe connectionsfrom the context
units to thehiddenunits. Theseconnectionsallow infor-
mationaboutpastinputs—asencodedin theprior hidden
representationcopiedontothecontext units—toinfluence
currentperformance.

Althoughthetargetoutputusedduringtrainingwasthe
encodingfor the actualnext word, a numberof words

3



RohdeandPlaut Lessis Lessin LanguageAcquisition

weretypically possibleat any givenpoint in thesentence.
Therefore,to perform optimally the network must gen-
erate,or predict,a probability distribution over the word
unitsindicatingthelikelihoodthateachwordwouldoccur
next. Averagedacrosstheentirecorpus,this distribution
will generallyresultin thelowestperformanceerror.

2.1.3 Corpora

Elman’scomplex trainingregimeninvolvedtraininganet-
work on a corpusof 10,000sentences,75% of which
were“complex” in that they containedat leastonerela-
tive clause.In his simpleregimen,the network wasfirst
trainedexclusively on simple sentencesand then on an
increasingproportionof complex sentences.Inputswere
arrangedin four corpora,eachconsistingof 10,000sen-
tences.The first corpuswasentirely simple, the second
25% complex, the third 50% complex, andthe final cor-
puswas75%complex—identicalto theinitial corpusthat
the network had failed to learn when it alonewas pre-
sentedduring training. An additional75% complex cor-
pus,generatedin thesamewayasthelasttrainingcorpus,
wasusedfor testingthenetwork.

In orderto studytheeffectof varyinglevelsof informa-
tion in embeddedclauses,we constructedfive grammar
classes. In classA, semanticconstraintsdid not apply
betweena clauseandits subclause,only betweennouns
andverbsexplicitly presentin eachindividual clause.In
classB, 25% of the subclausesrespectedthe semantic
constraintsof theirparentclause.In suchcases,themodi-
fiednounmustbeasemanticallyvalid subjectof theverb
for a subject-relative or objectof the verb for an object-
relative. In classC, 50%of thesubclausesrespectedthis
constraint,75% in classD, and100%in classE. There-
fore, in classA, which wasmost like Elman’s grammar,
the contentsof a relative clauseprovidedno information
aboutthenounbeingmodifiedotherthanwhetherit was
singularor plural, whereasclassE producedsentences
which were the most English-like. We should empha-
sizethat, in this simulation,semanticconstraintsalways
appliedwithin a clause,including the main clause.This
is becausewe were interestedprimarily in the ability of
thenetwork to performthedifficult mainverbprediction,
which relied not only on the numberof the subject,but
on its semanticpropertiesaswell. In asecondsimulation,
we investigateacasein whichall thesemanticconstraints
wereeliminatedto producea grammaressentiallyidenti-
cal to Elman’s.

As in Elman’s work, four versionsof eachclasswere
createdto producelanguagesof increasingcomplexity.
GrammarsA � , A �
	 , A 	
� , andA ��	 , for example,produce
0%,25%,50%,and75%complex sentences,respectively.
In addition,for eachlevel of complexity, the probability
of relative clausemodificationwasadjustedto matchthe

averagesentencelengthin Elman’s corpora,with theex-
ceptionthat the25%and50%complex corporainvolved
slightly longersentencesto providea moreevenprogres-
sion, reducingthe largedifferencebetweenthe 50% and
75% complex conditionsapparentin Elman’s corpora.
Specifically, grammarswith complexity 0%, 25%, 50%,
and75%respectively had0%,10%,20%,and30%mod-
ificationprobabilityfor eachnoun.

For eachof the 20 grammars(five levels of semantic
constraintscrossedwith four percentagesof complex sen-
tences),two corporaof 10,000sentencesweregenerated,
onefor trainingandtheotherfor testing.Corporaof this
sizearequiterepresentativeof thestatisticsof thefull lan-
guagefor all but the longestsentences,which are rela-
tively infrequent. Sentenceslonger than16 wordswere
discardedin generatingthe corpora,but thesewere so
rare ( ���� ��� ) that their loss shouldhave had negligi-
ble effects. In order to performwell, a network of this
sizecouldn’t possibly“memorize”thetrainingcorpusbut
mustlearnthestructureof thelanguage.

2.1.4 Training and Testing Procedures

In the condition Elman referredto as “starting small,”
he trained his network for 5 epochs(completepresen-
tations)of eachof the four corpora,in increasingorder
of complexity. During training, weightswere adjusted
to minimize the summedsquarederror betweenthe net-
work’s prediction and the actual next word, using the
back-propagationlearning procedure(Rumelhartet al.,
1986) with a learningrate of 0.1, reducedgradually to
0.06.No momentumwasusedandweightswereupdated
aftereachword presentation.Weightswereinitialized to
randomvaluessampleduniformly between� 0.001.

For eachof the five languageclasses,we trainedthe
network shown in Figure 1 using both incrementaland
non-incrementaltraining schemes.In the complex regi-
men,thenetwork wastrainedonthemostcomplex corpus
(75% complex) for 25 epochswith a fixed learningrate.
Thelearningratewasthenreducedfor afinal passthrough
thecorpus.In thesimpleregimen,thenetworkwastrained
for fiveepochsoneachof thefirst threecorporain increas-
ing orderof complexity. It wasthentrainedon thefourth
corpusfor 10 epochs,followedby a final epochat there-
ducedlearningrate. The six extra epochsof training on
thefourthcorpus—notincludedin Elman’sdesign—were
intendedto allow performancewith thesimpleregimento
approachasymptote.

Becausewe were interestedprimarily in the per-
formancelevel possibleunder optimal conditions, we
searchedawiderangeof trainingparametersto determine
a set which consistentlyachieved the bestperformance
overall.1 We trainedour network with back-propagation

1Theeffectsof changesto someof theseparametervalues—inpartic-
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usingmomentumof 0.9,a learningrateof 0.004reduced
to 0.0003for thefinal epoch,abatchsizeof 100wordsper
weightupdate,andinitial weightssampleduniformly be-
tween � 1.0 (cf. � 0.001for Elman’s network). Network
performancefor both training andtestingwasmeasured
in termsof divergenceandnetwork outputswerenormal-
ized usingLuce ratios(Luce,1986),alsoknown assoft-
maxconstraints(seeRohde& Plaut,1999).

Becauseour grammarswere in standardstochastic,
context-freeform, it waspossibleto evaluatethenetwork
by comparingits predictionsto the theoreticallycorrect
next-word distributions given the sentencecontext (Ro-
hde,1999). By contrast,it wasnot possibleto generate
suchoptimal predictionsbasedon Elman’s grammar. In
order to form an approximationto optimal predictions,
Elmantrainedanempiricallanguagemodelon sentences
generatedin the sameway asthe testingcorpus.Predic-
tionsby thismodelwerebasedontheobservednext-word
statisticsgiveneverysentencecontext to which it wasex-
posed.

2.1.5 Results and Discussion

Elmandid not provide numericalresultsfor the complex
condition,but he did report that his network wasunable
to learnthe taskwhentrainedon the mostcomplex cor-
pusfrom thestart.However, learningwaseffective in the
simpleregimen,in which thenetwork wasexposedto in-
creasinglycomplex input. In this condition,Elmanfound
that themeancosine2 of theanglebetweenthenetwork’s
predictionvectorsandthoseof the empiricalmodelwas
0.852(SD= 0.259),where1.0is optimal.

Figure2 shows, for eachtraining condition,the mean
divergenceerror per word on the testingcorporaof our
network whenevaluatedagainstthetheoreticallyoptimal
predictionsgiven the grammar. To reducethe effect of
outliers,andbecausewewereinterestedin thebestpossi-
bleperformance,resultswereaveragedoveronly thebest
16 of 20 trials. Somewhatsurprisingly, ratherthananad-
vantagefor startingsmall,thedatarevealsasignificantad-
vantagefor thecomplex trainingregimen( ����� ��	�� = 53.8,�  .001). Under no condition did the simple training
regimenoutperformthecomplex training. Moreover, the
advantagein startingcomplex increasedwith thepropor-
tion of fully constrainedrelative clauses.Thus,whenthe
16 simpleand16 complex trainingregimennetworksfor
eachgrammarwerepairedwith oneanotherin orderof
increasingoverall performance,therewasa strongposi-
tive correlation( � = .76, �  .001)betweenthe orderof

ular, themagnitudeof initial randomweights—areevaluatedin asecond
simulation.

2Thecosineof theanglebetweentwo vectorsof equaldimensionality
canbecomputedasthedot product(or sumof thepairwiseproductsof
the vector elements)divided by the productof the lengthsof the two
vectors.
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Figure2: Meandivergenceper word predictionover the
75% complex testing corporageneratedfrom grammar
classesA throughE (increasingin theextentof semantic
constraints)for thesimpleandcomplex trainingregimes.
Notethat lower valuescorrespondto betterperformance.
Meansandstandarderrorswerecomputedover the best
16of 20 trials in eachcondition.

the grammarsfrom A–E and the differencein error be-
tweenthesimpleversuscomplex trainingregimes.3 This
is consistentwith the ideathat startingsmall is mostef-
fective whenimportantdependenciesspanuninformative
clauses.Nevertheless,againstexpectations,startingsmall
failedto improveperformanceevenfor classA, in which
relative clausesdid not conform to semanticconstraints
imposedby theprecedingnoun.

In summary, startingwith simple inputsproved to be
of no benefit and was actually a significant hindrance
when semanticconstraintsappliedacrossclauses. The
networkswereableto learnthegrammarsquitewell even
in the complex training regimen, as evidencedby addi-
tionalanalysesreportedin RohdeandPlaut(1999).More-
over, theadvantagefor trainingon thefully complex cor-
pus increasedas the languagewas mademore English-
like by enforcinggreaterdegreesof semanticconstraints.
While it hasbeenshown previously that beginning with
a reducedtrainingsetcanbedetrimentalin classification
taskssuchasexclusive-OR(Elman,1993),it appearsthat
beginning with a simplified grammarcan also produce
significantinterferenceon a more language-like predic-
tion task.At thevery least,startingsmalldoesnot appear
to beof generalbenefitin all languagelearningenviron-
ments.

3Thecorrelationwith grammarclassis alsosignificant( & = .65, ')(
.001)whenusingtheratio of thesimpleto complex regimenerrorrates
for eachpair of networks,ratherthantheirdifference.
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2.2 Rohde and Plaut (1999) Simulation 2:
Replication of Elman (1993)

Our failure to find an advantagefor startingsmall in our
initial work led us to askwhat differencesbetweenthat
studyandElman’swereresponsiblefor thediscrepantre-
sults. All of the grammarsin the first setof simulations
differedfrom Elman’s grammarin that the languagere-
tainedfull semanticconstraintswithin themainclause.It
is possiblethatwithin-clausedependencieswerein some
way responsiblefor aiding learningin thecomplex train-
ing regimen.Therefore,we produceda language,labeled
R for replication, which was identical to Elman’s in all
known respects,thusruling outall but themostsubtledif-
ferencesin languageas the potentialsourceof our dis-
parateresults.

2.2.1 Methods

Like Elman’s grammar, grammarR usesjust 12 verbs:
2 pairseachof transitive, intransitive, andmixed transi-
tivity. In addition, as in Elman’s grammar, the proper
nounsMary and John could not be modified by a rel-
ative clauseandthe only additionalconstraintsinvolved
numberagreement.We shouldnote that, althoughour
grammarandElman’s producethe samesetof stringsto
the bestof our knowledge, the probability distributions
over the strings in the languagesmay differ somewhat.
As before,corporawith four levels of complexity were
produced.In this casethey verycloselymatchedElman’s
corporain termsof averagesentencelength.

Networksweretrainedon this languagebothwith our
own methodsandparametersandwith thoseascloseas
possibleto the onesElmanused. In the formercase,we
usednormalizedoutputunitswith adivergenceerrormea-
sure,momentumof 0.9,elevenepochsof trainingon the
final corpus,a batchsizeof 10 words,a learningrateof
0.004 reducedto 0.0003for the last epoch,and initial
weightsbetween�+* . In the latter case,we usedlogis-
tic outputunits,squarederror, nomomentum,fiveepochs
of training on the fourth corpus,online weight updating
(afterevery word), a learningrateof 0.1 reducedto 0.06
in equalstepswith eachcorpuschange,andinitial weights
between�,��� �-�.* .

2.2.2 Results and Discussion

Even when training on sentencesfrom a grammarwith
no semanticconstraints,our learningparametersresulted
in an advantagefor the complex regimen. Over the best
12 of 15 trials, the network achieved an averagediver-
genceof 0.025 under the complex condition compared
with 0.036 for the simple condition ( �/�0� ��� = 34.8, � 
.001). Aside from the learningparameters,one impor-
tantdifferencebetweenour trainingmethodandElman’s

was that we added6 extra epochsof training on the fi-
nal corpusto bothconditions.This extendedtrainingdid
not,however, disproportionatelybenefitthecomplex con-
dition. Betweenepoch20 and25, theaveragedivergence
error under the simple regimen droppedfrom 0.085 to
0.061,or 28%. During the sameperiod,the error under
thecomplex regimenonly fell 8%,from 0.051to 0.047.4

Whenthe network wastrainedusingparameterssimi-
lar to thosechosenby Elman,it failedto learnadequately,
settlinginto badlocal minima. Thenetwork consistently
reacheda divergenceerrorof 1.03underthesimpletrain-
ing regimen and 1.20 under the complex regimen. In
termsof city-blockdistance,theseminimafall at1.13and
1.32respectively—muchworsethanthe resultsreported
by Elman. We did, however, obtainsuccessfullearning
by using the sameparametersbut simply increasingthe
weightinitializationrangefrom �,�.� �1��* to �+*-� � , although
performanceundertheseconditionswasnotquiteasgood
aswith all of our parametersandmethods.Even so,we
againfounda significantadvantagefor the complex reg-
imen over the simple regimen in termsof meandiver-
genceerror(meansof 0.122vs.0.298,respectively; � ��� �
�
= 121.8,�  .001).

Giventhat thestrengthof initial weightsappearsto be
a key factor in successfullearning,we conducteda few
additionalrunsof thenetwork to examinetherole of this
factor in moredetail. The networks were trainedon 25
epochsof exposureto corpusR��	 underthecomplex reg-
imenusingparameterssimilar to Elman’s, althoughwith
a fixedlearningrateof 1.0 (i.e., without annealing).Fig-
ure 3 shows the sumsquarederror on the testingcorpus
over the courseof training, asa function of the rangeof
theinitial randomweights.It is apparentthatlargerinitial
weightshelpthenetwork breakthroughtheplateauwhich
liesatanerrorvalueof 0.221.

The dependenceof learningon the magnitudesof ini-
tial weightscanbeunderstoodin light of propertiesof the
logistic activation function, the back-propagationlearn-
ing procedure,andtheoperationof simplerecurrentnet-
works. It is generallythoughtthatsmall randomweights
aid error-correcting learning in connectionistnetworks
becausethey placeunit activationswithin thelinearrange
of thelogistic functionwhereerrorderivatives,andhence
weight changes,will be largest. However, the error
derivatives that are back-propagatedto hiddenunits are
scaledby their outgoingweights;feedbackto the restof
thenetwork is effectively eliminatedif theseweightsare
too small. Moreover, with very small initial weights,the
summedinputsof unitsin thenetwork areall almostzero,

4The further drop of theseerror values,0.047and0.061,to the re-
portedfinal valuesof 0.025and0.036resultedfrom theuseof areduced
learningratefor epoch26. Endingwith abit of trainingwith avery low
learningrate is particularly useful when doing online, or small batch
size,learning.
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Figure3: Sumsquarederrorproducedby thenetwork on
the testingset at eachepochof training on corpusR�
	
underthecomplex regimen,asa functionof therangeof
initial randomweights.

yielding activationsvery closeto 0.5 regardlessof thein-
put presentedto the network. This is particularly prob-
lematicin a simplerecurrentnetwork becauseit leadsto
context representations(copiedfromprevioushiddenacti-
vations)thatcontainlittle if any usableinformationabout
previous inputs. Consequently, considerablyextended
training mayberequiredto accumulatesufficient weight
changesto begin to differentiateeventhesimplestdiffer-
encesin context (seeFigure3). By contrast,startingwith
relatively largeinitial weightsnotonly preservestheback-
propagatederrorderivativesbut alsoallows eachinput to
haveadistinctandimmediateimpactonhiddenrepresen-
tationsand,hence,on context representations.Although
the resultingpatternsmay not be particularly good rep-
resentationsfor solvingthetask(becausetheweightsare
random),they at leastprovide an effective startingpoint
for beginningto learntemporaldependencies.

In summary, on a grammaressentiallyidenticalto that
usedby Elman(1991,1993),we found a robust advan-
tagefor trainingwith thefull complexity of the language
from the outset. Although we cannotdirectly compare
the performanceof our network to that of Elman’s net-
work, it appearslikely thatthecurrentnetwork learnedthe
taskconsiderablybetterthantheempiricalmodelthatwe
usedfor evaluation.By contrast,thenetwork wasunable
to learnthe languagein eitherthesimpleor thecomplex
conditionwhenwe usedparameterssimilar to thoseem-
ployed by Elman. However, increasingthe rangeof the
initial connectionweightsallowed the network to learn
quitewell, althoughin this casewe againfounda strong
advantagefor startingwith thefull grammar. It waspossi-
ble to eliminatethisadvantageby removing all dependen-
ciesbetweenmainclausesandtheir subclauses,andeven

to reverseit by, in addition,trainingexclusively on com-
plex sentences.But thesetrainingcorporabearfar lessre-
semblanceto theactualstructureof naturallanguagethan
do thosewhich producea clearadvantagefor trainingon
thefull complexity of thelanguagefrom thebeginning.

2.3 Rohde and Plaut (1999) Simulation 3:
Progressive Memory

Elman(1993)arguedthathis finding thatinitially simpli-
fied inputs were necessaryfor effective languagelearn-
ing was not directly relevant to child languageacquisi-
tion because,in his view, therewas little evidencethat
adultsmodify the grammaticalstructureof their speech
when interactingwith children (althoughwe would dis-
agree,see,e.g.,Gallaway& Richards,1994;Snow, 1995;
Sokolov, 1993). As an alternative, Elmansuggestedthat
thesameconstraintcouldbesatisfiedif thenetwork itself,
ratherthanthetrainingcorpus,wasinitially limited in its
complexity. Following Newport’sless-is-morehypothesis
(Newport, 1990; Goldowsky & Newport, 1993), Elman
proposedthat the gradualmaturationof children’s mem-
ory and attentionalabilities could actually aid language
learning.

To test this proposal,Elman (1993) conductedaddi-
tional simulationsin which the memoryof a simple re-
currentnetwork (i.e., the processof copying hiddenac-
tivations onto the context units) was initially hindered
and then allowed to gradually improve over the course
of training. When trainedon the full complexity of the
grammarfrom theoutset,but with progressively improv-
ing memory, the network wasagainsuccessfulat learn-
ing the structureof the languagewhich it had failed to
learnwhenusingfully maturememorythroughouttrain-
ing. In this way, Elman’s computationalfindingsdove-
tailedperfectlywith Newport’sempiricalfindingsto pro-
videwhatseemedlikecompellingevidencefor theimpor-
tanceof maturationalconstraintson languageacquisition
(see,e.g.,Elmanetal., 1996,for furtherdiscussion).

Given that the primary computationalsupportfor the
less-is-morehypothesiscomesfrom Elman’s simulations
with limited memoryratherthanthosewith incremental
trainingcorpora,it is importantto verify thatour contra-
dictoryfindingsof anadvantagefor thecomplex regimen
in Simulations1 and2 alsoholdbycomparisonwith train-
ing underprogressively improving memory. Accordingly,
we conductedsimulationssimilar to thoseof Elman, in
which a network with graduallyimproving memorywas
trainedon the full semanticallyconstrainedgrammar, E,
aswell ason the replicationgrammar, R, usingboth El-
man’sandour own trainingparameters.

7
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2.3.1 Methods

In his limited-memorysimulation,Elman(1993)trained
a network exclusively on thecomplex corpus,5 which he
hadpreviously found to be unlearnable.As a modelof
limited memoryspan,therecurrentfeedbackprovidedby
thecontext layerwaseliminatedperiodicallyduringpro-
cessingby settingtheactivationsat this layer to 0.5. For
thefirst 12epochsof training,thiswasdonerandomlyaf-
ter 3–4wordshadbeenprocessed,without regardto sen-
tenceboundaries.For thenext 5 epochsthememorywin-
dow was increasedto 4–5 words, then to 5–6, 6–7, and
finally, in the last stageof training, the memorywasnot
interferedwith at all.

In thecurrentsimulation,thetrainingcorpusconsisted
of 75% complex sentences,althoughElman’s may have
extendedto 100%complexity. Like Elman,we extended
the first period of training, which useda memorywin-
dow of 3–4words,from 5 epochsto 12 epochs.We then
trainedfor 5 epochseachwith windows of 4–5 and 5–
7 words. The length of the final period of unrestricted
memorydependedon the training methods.Whenusing
our own methods(seeSimulation2), aswhentrainingon
the final corpusin the simple regimen, this period con-
sistedof 10 epochsfollowed by one more with the re-
ducedlearningrate. Whentraining with our approxima-
tion of Elman’s methodson grammarR, this final period
wassimply five epochslong. Therefore,underbothcon-
ditions,thememory-limitednetwork wasallowedto train
for a total of 7 epochsmorethanthecorrespondingfull-
memorynetwork in Simulations1 and2. Whenusingour
methods,learningratewasheldfixeduntil thelastepoch,
asin Simulation1. With Elman’smethod,wereducedthe
learningratewith eachchangein memorylimit.

2.3.2 Results and Discussion

Although he did not provide numerical results,Elman
(1993) reportedthat the final performancewas as good
as in the prior simulation involving progressive inputs.
Again, this was deemeda successrelative to the com-
plex, full-memoryconditionwhichwasreportedlyunable
to learnthetask.

Usingour trainingmethodson languageR, thelimited-
memoryconditionresultedin equivalentperformanceto
thatof thefull-memorycondition,in termsof divergence
error (meansof 0.027 vs. 0.025, respectively; � ��� �
� =
2.12, �87 .15). Limited memorydid, however, provide a
significantadvantageover thecorrespondingprogressive-
inputs condition from Simulation2 (mean0.036; �/��� �
�
= 24.4, �  .001). Similarly, for languageE, the limited-
memoryconditionwasequivalentto thefull-memorycon-

5It is unclearfrom the text whetherElman(1993)usedthe corpus
with 75%or 100%complex sentencesin theprogressive memoryexper-
iments.

dition (meanof 0.093for both; �9 1) but betterthanthe
progressive-inputsconditionfrom Simulation2 (meanof
0.115; �/��� �
� = 31.5,�  .001).

With Elman’s trainingmethodsongrammarR, thenet-
work with limited memoryconsistentlysettledinto the
samelocal minimum, with a divergenceof 1.20, as did
thenetwork with full memory(seeSimulation2). Using
the sameparametersbut with initial connectionweights
in therange� 1.0,thelimited-memorynetwork againper-
formedalmostequivalentlyto thenetwork with full mem-
ory (meansof 0.130vs.0.122,respectively; � ��� �
� = 2.39,�:7 0.10),andsignificantlybetterthanthe full-memory
network trainedwith progressive inputs(meanof 0.298;
�/��� �
� = 109.1,�  .001).

To summarize,in contrastwith Elman’sfindings,when
training on the fully complex grammarfrom the outset,
initially limiting the memoryof a simple recurrentnet-
work providedno advantageover trainingwith full mem-
ory, despitethefact that the limited-memoryregimenin-
volved7 moreepochsof exposureto thetrainingcorpus.
On the other hand, in all of the successfulconditions,
limited memorydid provide a significantadvantageover
graduallyincreasingthe complexity of the training cor-
pus.

2.4 Summary

Contraryto theresultsof Elman(1991,1993),Rohdeand
Plaut(1999)foundthatit is possiblefor astandardsimple
recurrentnetwork to gainreasonableproficiency in a lan-
guageroughlysimilar to thatdesignedby Elmanwithout
stagedinputsor memory. In fact, therewasa significant
advantagefor startingwith thefull language,andthis ad-
vantageincreasedas languagesweremademorenatural
by increasingtheproportionof clauseswhich obeyedse-
manticconstraints.Theremay, of course,be othertrain-
ing methodswhich would yield evenbetterperformance.
However, at theveryleast,it appearsthattheadvantageof
stagedinput is not a robustphenomenonin simplerecur-
rentnetworks.

In order to identify the factorsthat led to the disad-
vantagefor startingsmall, we returnedto a more direct
replicationof Elman’s work in Simulation2. Using El-
man’s parameters,we did find what seemedto be an ad-
vantagefor startingsmall, but the network failed to suf-
ficiently masterthe taskin this condition. We do not yet
understandwhat led Elman to succeedin this condition
wherewe failed. One observation madein the course
of thesesimulationswas that larger initial randomcon-
nectionweightsin thenetwork werecrucial for learning.
We thereforereappliedElman’s training methodsbut in-
creasedthe rangeof the initial weightsfrom �,��� �-�.* to
�+*-� � . Both this conditionandour own training parame-
tersrevealeda strongadvantagefor startingwith the full
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language.

Finally, in Simulation 3 we examined the effect of
progressive memorymanipulationssimilar to thoseper-
formedby Elman(1993). It was found that, despitein-
creasedtraining time, limited memoryfailed to provide
an advantageover full memoryin any condition. Inter-
estingly, trainingwith initially limited memorywasgen-
erally lessof a hindranceto learningthan training with
initially simplified input. In all cases,though,successful
learningagainrequiredtheuseof sufficiently largeinitial
weights.

Certainly there are situationsin which starting with
simplified inputs is necessaryfor effective learningof a
predictiontaskby arecurrentnetwork. For example,Ben-
gio, Simard,and Frasconi(1994) (seealso Lin, Horne,
& Giles, 1996) report suchresultsfor tasksrequiring a
network to learncontingencieswhichspan10–60entirely
unrelatedinputs.However, suchtasksarequiteunlike the
learningof naturallanguage.It mayalsobepossiblethat
startingwith a high proportionof simplesentencesis of
significantbenefitin learningother languageprocessing
tasks,suchascomprehension.A child’s discovery of the
mappingbetweenform andmeaningwill likely befacili-
tatedif heor sheexperiencespropositionallysimpleutter-
anceswhosemeaningis apparentor is clarifiedby theac-
companyingactionsof theparent.However, therealques-
tion in addressingthe less-is-morehypothesisis whether
limited cognitive capacitywill substantiallyaid this pro-
cess.

Having failedto replicateElman’s results,it seemsap-
propriateto turn a critical eye on theothermajorsources
of evidencefor the less-is-morehypothesis.Aside from
Elman’s findings, four main studieshave beencharac-
terizedas providing supportfor the advantageof learn-
ing with limited resources. Goldowsky and Newport
(1993) presentedevidenceof the noise-reducingpower
of randomfiltering in a statistical learning model of a
simple morphologicalsystem. Kareev, Lieberman,and
Lev (1997) offered a statistical argument in favor of
the correlation-enhancingpower of small samplesand
performedtwo empirical studiespurportedto confirm
this. The other two studiesare more purely empirical.
Cochran,McDonald, and Parault (1999) taughtpartici-
pantsASL verbswith andwithout the presenceof a si-
multaneouscognitive load and with practiceon the full
signsor on individual morphemes.Finally, Kerstenand
Earles(2001)taughtparticipantsa simplenovel language
with andwithoutsequentialinput. We discusseachof the
four papersherein somedetail.

3 Goldowsky and Newport (1993)

Goldowsky andNewport (1993)proposeda simplelearn-
ing task,andone form of learningmodel that might be
usedto solve the task. Training examplesconsistedof
pairingsof formsandmeanings.A form hadthreeparts,;

, < , and = . For eachpart therewere threepossible
values:

; � , ; � , ;?> , < � , < � , etc. Meaningswere also
composedof threeparts, @ , A , and B , eachwith three
values.Therewasa very simplemappingfrom forms to
meanings:

; � , ; � , and
;?>

correspondedto @ � , @ � , and
@ >

, respectively, < � , < � , and < > correspondedto A � ,
A+� , and A > , andso forth.6 Thus,the form

; �C<D�E= > had
themeaning@F�GAH�IB > . Thetaskwas,apparently, to learn
thissimpleunderlyingmapping.

Goldowsky and Newport suggestedthat one way to
solve thetaskmightbeto gathera tablewith countsof all
form andmeaningcorrespondencesacrosssomeobserved
data. If the form

; �G<J�I= > and the meaning @F�IAH�EB >
wereobserved,themodelwould incrementvaluesof cells
in the table correspondingto the pairing of eachof the
eightsubsetsof theform symbolswith eachsubsetof the
threemeaningsymbols. If trainedon all 27 possibleex-
amples,themodelwouldhaveavalueof 9 for eachof the
cellscorrectlypairing individual elementsof the form to
individualelementsof themeaning(e.g.

; � to @ � and < >
to A > ). The next largest,incorrectlypaired,cells would
have a valueof 3 andthe restof the cells would have a
valueof 1.

Goldowsky and Newport suggestedthat there is too
much noisein sucha table becauseof the many values
representingincorrector overly complex pairings. They
thenintroduceda filtering schememeantto simulatethe
effect of poorworking memoryon a child’s experiences.
Beforeaform/meaningpair is enteredinto thetable,some
of its informationis lostatrandom.Half of thetimeoneof
the threeelementsof the form is retainedandhalf of the
time two elementsareretained. Likewise for the mean-
ing. The authorsarguedthat this improveslearningbe-
causeit producesa tablewith a highersignal-to-noisera-
tio. Therefore,they concluded,having limited memory
canbehelpfulbecauseit canhelpthelearnerfocuson the
simple,oftenimportant,detailsof amapping.

But we should examine this learning situation a bit
morecarefully. First of all, in what senseis the signal-
to-noiseratio improving asa resultof filtering? Theratio
betweenthecorrect,largestvaluesin thetablein theadult
(unfiltered)caseandthenext largestcompetitorswas3:1.
In thechild (filtered)case,theexpectedratio remains3:1.
Although someof the competitorswill becomepropor-

6The mapping used in the Goldowsky and Newport (1993) pa-
per actually includedoneexception,that form KML�NOLIPQL hasmeaningR+S�T/S�UMS

. Becausethe introductionof this did not seemto strengthen
their casefor startingsmall,it is eliminatedherefor simplicity.
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tionately lesslikely, otherswill not. What is eliminated
by thefiltering is the largenumberof very unlikely map-
pings. So the signal-to-noiseratio is improving if it is
takento betheratio of thecorrectvalueto thesumof all
othervalues.If takento betheratioof thecorrectvalueto
thenearestincorrectvalue,thereis no improvement.Fur-
thermore,the child learnermust experiencemany more
form/meaningpairingsthantheadultlearnerbeforeit can
adequatelyfill its co-occurrencetable.

To seetheimplicationsof thesepoints,weneedtomake
the tasksomewhat moreexplicit. Goldowsky andNew-
port (1993)presenteda model that countsstatistics,but
not one that actuallysolves the form/meaningmapping.
To completethe story, we will needto generatea model
that is capableof taking a form and producingits best
guessfor the appropriatemeaning. Two potentialsolu-
tions to this problemimmediatelycometo mind. In the
first, arguablysimpler, method,themodellooksdown the
columnof valuesunderthe given form andchoosesthe
meaningcorrespondingto thelargestvalue.If two mean-
ingshave thesamestrength,themodelis countedwrong.
Thiswill bereferredto asthePlurality method.

In thesecondmethod,themodeldrawsat randomfrom
thedistribution of values,suchthat theprobabilityof se-
lecting a meaningis proportionalto the valueassociated
with that meaning. This Samplingmethodseemsto be
morein line with what Goldowsky andNewport implied
might be going on, judging from their useof the term
signal-to-noiseratio. The Plurality methodonly fails if
the nearestcompetitoris asstrongasthecorrectanswer.
In contrast,the Samplingmethodis wrong in proportion
to the total strengthof competitors.Both of thesemeth-
odswereimplementedandtestedexperimentallywith and
without randomfiltering. The modelswere judgedby
their ability to provide the correctmeaningfor eachof
the nine forms involving a single element. The results,
averagedover 100 trials in eachcondition,areshown in
Figure4.

As Goldowsky andNewport(1993)suggested,theirfil-
teringmechanismis indeedbeneficialwhenusedwith the
Samplingmethod,achieving a scoreof about25.2%ver-
sus14.3%without filtering. However, Samplingoverall
performsquitepoorly. ThePluralitymethodismuchmore
effective. But in thatcase,filtering is harmful,andslows
learningdown considerably. Evenafter200trials, thefil-
teredmodelis ableto completelysolvethetaskonly about
80%of thetime.

Now onemight reasonablymaketheargumentthatthis
isn’t a fair comparison.Perhapsthe Plurality methodis
muchmoresusceptibleto noiseandthebenefitof thefil-
ter isn’t apparentin suchperfectconditions.After all, it
is probablyunreasonableto expect that a humanlearner
is ableto perfectlynoticeandstoreall availableinforma-
tion. To testthispossibility, asourceof noisewasaddedto
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Figure4: LearningtheGoldowsky & Newport(1993)task
usingraw countsin a noise-freeenvironment.

thesimulations.50%of the time, theoperationof incre-
mentinga valuein thetablefailed. Thus,half of thedata
waslost at random.As shown in Figure5, this manipu-
lation hadalmostno effect on the Samplingmethod,but
did have someeffect on the Plurality method. However,
thePluralitymethodremainedsignificantlybetterwithout
thefilter.

A final considerationis that the bubblediagramsused
to representthe form/meaningco-occurrencetablein the
Goldowsky andNewport (1993)paperdid notdirectly re-
flect raw co-occurrencecounts.Theradiusof thebubbles
wasproportionalto the ratio of the co-occurrencecount
to the squareroot of the productof the overall number
of occurrencesof theform andtheoverall numberof oc-
currencesof the meaning. This was termedthe consis-
tencyof co-occurrence. So onemight ask,how well do
the two proposedmodelsperformif they work with co-
occurrenceconsistency valuesratherthanraw counts.As
shown in Figure6, performancedeclinesslightly for the
Samplingmethodandimprovesslightly for the Plurality
methodwith filtering. But overall the resultsarequalita-
tively similar.

Thus,with themuchmoreeffectivePluralitymethodof
determiningform/meaningpairsfrom co-occurrencedata,
the filtering mechanismwasa serioushindrance.But it
seemsthatbuilding a largetablemaynot beat all similar
to thewaythehumanbrainmightsolvethismappingtask.
Perhapsa bettermodelis thatof a connectionistnetwork.
Could sucha model learn the underlyingregularity and
would it benefitfrom thesamefiltering methodproposed
by Goldowsky andNewport?To answerthisquestion,we
performedsomesimulationexperiments.

First a simpleone-layernetwork wasconstructed,with
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a 9-unit input layer fully connectedto a 9-unit output
layer. Thenineinput unitscorrespondedto theninepos-
sibleelementsof theform. Oneof thefirst threeunitswas
turnedon to representthe

;
element,oneof the second

setof threeunits was turnedon to representthe < ele-
ment,andsoforth. Similarly, thenineunits in theoutput
representationcorrespondedto theninepossibleelements
of themeaning,with threeof thenineunitsnormallyhav-
ing targetsof 1, and the rest having targetsof 0. If an
elementof theform waseliminatedby thefiltering mech-
anism,thecorrespondingthreeunitsof theinput wereall
turnedoff. If anelementof themeaningwaseliminated,
the correspondingthreeunits of the outputhadno target
values. The network was testedby presentingit with a
singleelementof theform asaninput. Althoughthenet-
work mayneverhavebeentrainedto performthisparticu-
lar mapping,thedesiredresponseis thatit will outputjust
the correspondingelementof the meaning. A response
wasconsideredcorrectif theactivationsof all nineoutput
unitswereon thecorrectsideof 0.5.

In order to argue that filtering is or is not beneficial,
onecannotsimply rely on performanceundera singleset
of training parameters.It is possiblethat the benefitof
filtering couldbemaskedby a poorchoiceof parameters.
Therefore,we trainednetworks using32 parametersets.
Four learningrates(0.05,0.1,0.2,0.4)werecrossedwith
twomomentumvalues(0.0,0.9),two initial weightranges
( �,�.�[* , �+*-� � ), andtwo weightdecayvalues(0.0,0.0001).
Networksweretrainedon 1000randomlyselectedexam-
plesusingonline learning,meaningthat weight updates
wereperformedaftereachexample.

Performancewasmeasuredby testingthemodel’sabil-
ity to producethe correctmeaningfor eachof the nine
isolatedforms. Thefinal performancein eachcondition,
averagedover 50 trials, is shown in Table3. Without fil-
tering,thenetwork learnsbestwith small initial weights,
someweightdecay, momentum,anda largelearningrate.
With filtering, thenetwork learnsbestwith a small learn-
ing rateandno momentum.But underno conditionsdid
filtering improve learning. Figure7 shows the averaged
learningprofileswith andwithout filtering usingtraining
parameterswith which the filtered networks performed
quitewell: noweightdecayor momentum,initial weights
�,���\* , and learningrate0.05. Although they reachsim-
ilar final performance,the networks learnedmuchmore
quickly andsmoothlywithoutfiltering.

Onemight argue that we have cheatedby applying a
single layer network to the taskbecausesucha network
cannotlearnvery complex mappings,so it doesn’t need
filtering to learnthis simpleone. Admittedly, if the task
werenotsosimple,wewouldhaveuseda largernetwork.
To test the possibility that a larger network will fail to
learn the simple rule without filtering, we traineda two
layer, 9-9-9, feed-forward network using the sametask
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Table3: Final performancelevels with a 9-9 network undervariousconditions. The left value in eachpair is the
performancewithout filtering andtheright valueis theperformancewith filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4

0 0 ]_^1`ba 100.0 98.9 100.0 98.4 100.0 76.7 100.0 44.9
0 0 ]caC` ^ 85.6 77.3 96.9 88.7 98.7 75.6 100.0 45.6
0 0.9 ]_^1`ba 100.0 33.3 100.0 16.7 100.0 4.4 100.0 3.3
0 0.9 ]caC` ^ 100.0 32.2 100.0 15.8 100.0 4.4 100.0 3.3

0.0001 0 ]_^1`ba 100.0 99.6 100.0 97.6 100.0 78.0 100.0 44.4
0.0001 0 ]caC` ^ 88.9 79.6 97.1 89.3 100.0 76.0 100.0 46.4
0.0001 0.9 ]_^1`ba 100.0 42.2 100.0 22.2 100.0 5.6 100.0 3.3
0.0001 0.9 ]caC` ^ 100.0 42.2 100.0 22.0 100.0 5.6 100.0 3.1

Table4: Final performancelevels with a 9-9-9 network undervariousconditions.The left valuein eachpair is the
performancewithout filtering andtheright valueis theperformancewith filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4

0 0 ]_^1`ba 0.0 1.1 42.0 2.2 92.9 8.9 99.1 26.9
0 0 ]caC` ^ 60.2 14.2 72.2 41.6 88.4 40.7 88.4 33.3
0 0.9 ]_^1`ba 98.7 24.9 93.8 14.4 81.1 6.4 19.6 2.4
0 0.9 ]caC` ^ 81.8 23.8 79.1 14.4 76.2 5.8 41.1 2.4

0.0001 0 ]_^1`ba 0.0 1.1 35.6 2.2 94.0 7.6 99.6 26.9
0.0001 0 ]caC` ^ 66.0 10.0 79.1 37.1 93.1 47.1 88.4 34.7
0.0001 0.9 ]_^1`ba 99.3 24.7 99.3 16.2 99.6 6.9 94.0 2.9
0.0001 0.9 ]caC` ^ 99.3 25.6 99.3 15.6 99.1 5.6 99.1 3.6
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Figure7: LearningtheGoldowsky & Newport(1993)task
usingasinglelayerneuralnetwork.

andparameters.

As shown in Table 4, the two layer network doesn’t
solve thetaskaseasilyastheonelayernetwork. But un-
derseveraldifferentchoicesof parameters,thenetwork is
ableto masterthetasknearlyall of thetimewithoutfilter-
ing. Thebestperformanceachievedwith filtering, on the
otherhand,wasjust 47.1%correct. In only two cases—
with a small learningrate,small initial weights,andno
momentum—didthefilterednetworksperformbetterthan
the unfilteredones. But in thosecasesthe filtered net-
worksonly reachedanaverageperformanceof 1.1%.

In summary, the filtering mechanismproposedby
Goldowsky andNewport (1993)for this taskdid not im-
prove the performanceof either an effective tabulation
strategy or two neuralnetwork models.Althoughtheran-
domfiltering mechanismsometimesisolatescorrectone-
to-one form/meaningpairs, it more frequentlydestroys
thosepairs and isolatesincorrectones. This introduces
noisethat outweighsthe occasionalbenefitand that can
bedetrimentalto learning.
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4 Kareev, Lieberman, and Lev
(1997)

Kareev, Lieberman,andLev (1997)beganby reiterating
a theoreticalpointaboutsampleddistributionswhichwas
first raisedin Kareev (1995). If a distribution over two
correlatedreal-valuedvariablesis sampledrepeatedly, the
expectedmedianof theobservedcorrelationsin thesam-
plesincreasesasthesizeof thesampledecreases.On the
basisof this fact, Kareev et al. suggestedthat humans
estimatingcorrelationsin observed eventswill be better
at detectingthosecorrelationsif they have limited work-
ing memory, andthuspresumablyrely onsmallerremem-
beredsamplesin formulatingtheir judgments.

In thefirst experiment,participantsweregiven128en-
velopes,eachcontaininga coin. Envelopeswereeither
red or greenandthe coin insidewaseithermarked with
an X or an O. Participantsopenedenvelopesone-by-one
in randomorderandeachtime tried to predictthetypeof
coin basedon the envelope’s color. The envelopes’con-
tentsweremanipulatedto producetruecolor/markcorre-
lations rangingfrom -0.6 to 0.6. The eight participants
in eachconditionweregroupedbasedon theresultsof a
single-trialdigit-spantestof working memory. Response
correlationwascomputedfor eachparticipantusing the
matrix of envelopecolorsandmark predictions.Kareev
et al. foundthat thelow-spanparticipantstendedto have
larger responsecorrelationsand to have more accurate
overallpredictions.

This is certainlyan interestingresult,but the theoreti-
cal explanationoughtto bereconsidered.To begin with,
the authorsstressedthe fact that medianobservedcorre-
lation increasesassamplesizedecreases.That is, with
a smallersample,observershave a higherprobability of
encounteringa correlationthat is largerthanthetruecor-
relation. This is mainly anartifactof the increasednoise
resultingfrom small samples.On thebasisof increasing
median,Kareev et al. concludedthat, “The limited ca-
pacityof workingmemoryincreasesthechancesfor early
detectionof a correlation... . [A] relationship,if it exists,
is morelikely to bedetected,thesmallerthesample”(p.
279). Thus,theauthorsseemto beequatingmedianesti-
mationwith the ability to detectany correlationwhatso-
ever. However, they do not offer an explicit accountof
how participantsmight be solving the correlationdetec-
tion or coin predictiontask.

The median correlation happensto be one measure
computableovera seriesof samples.7 But thereareother
measuresthatmaybemoredirectlyapplicableto theprob-
lem of detectinga correlation,suchasthemean, andnot
all measuresincreasein magnitudewith smallersamples.

7The term sampleis usedhereto refer to a setof observations,or
examples,not justasingleobservation.

Themeancorrelationdiminisheswith decreasingsample
size. But an individual participantis not encounteringa
seriesof samples,but just onesample,so the medianor
meancomputedover multiple samplesis not necessarily
relevant.

So what is an appropriatemodel of how participants
are solving the task, and how is this model affectedby
samplesize? Signal detectiontheory typically assumes
thathumanobservershavea thresholdabovewhichasig-
nal is detected.In this case,we might presumethat the
signalis theperceivedcorrelationbetweenenvelopecolor
andcointype,andthatthecorrelation,whetherpositiveor
negative, is detectableif its magnitudeis above a partici-
pant’s threshold.If participantsarebasingtheir responses
in thecoinpredictiontaskonasignaldetectionprocedure
involvingafixedthreshold,wemustaskwhatis theproba-
bility thatasampleof size A from adistributionwith true
correlation = hasan observed correlationgreaterthana
giventhreshold?

It seemsreasonableto supposethat the typical human
thresholdfor detectingcorrelationsin smallsamplesprob-
ably falls between0.05 and0.2, althoughit presumably
variesbasedon taskdemands.Figure8 shows the prob-
ability that a small samplehasan observed correlation
above 0.1 asa functionof thesizeof the sampleandthe
strengthof the true correlation. The datain this experi-
ment involved pairsof real-valuedrandomvariables. A
desiredcorrelation, = , was achieved by generatingthe
valuesasfollows:

gHh rand()i h = gDjlk *)m:= � rand()

where rand() producesa randomvalue uniformly dis-
tributed in the range[-1,1]. 1 million trials were con-
ductedfor eachpairingof samplesizeandcorrelation.

Clearly, for therangeof parameterscovered,thechance
that theobservedcorrelationis greaterthanthresholdin-
creasesmonotonicallywith samplesize. Largersamples
leadto a greaterchanceof detectinga correlation. One
maydisagreewith the arbitrarychoiceof 0.1 for the de-
tectionthreshold,but thesamepenaltyfor small samples
is seenwith a valueof 0.2, provided the true correlation
is greaterthan0.2, andthe effect becomesevenstronger
with thresholdsbelow 0.1. Thus,thefact that themedian
observed correlation increaseswith small samplesizes
doesnot bearon what is arguablya reasonablemodelof
humancorrelationdetection.

Another importantissueis that the samplingdistribu-
tion measuresdiscussedby Kareev etal. werefor pairsof
real-valuedvariables,but theexperimentsthey conducted
involvedbinaryvariables.Do thesameprinciplesapplyto
smallsamplesof binarydata?Figure9 shows themedian
observedcorrelationin smallsamplesof binarydata,asa
function of the samplesizeandthe true correlation. Al-
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Figure 8: The probability that the observed correlation
valueis greaterthan0.1(andthuspresumablydetectable)
asa functionof samplesizeandtruecorrelation( = ).

thoughmediancorrelationdecreasesasafunctionof sam-
ple size for real-valueddata,mediancorrelationdoesn’t
seemto vary in any systematicway asa functionof sam-
ple size for binary data. Thereis simply morevariabil-
ity in the small samples.But again,mediancorrelation
valueis notnecessarilyindicativeof theeaseof detection.
As with real-valueddata,theprobabilitythatanobserved
correlationis greaterthansomesmall thresholdtendsto
increasewith largersamplesof binarydata.

But it may be possiblethat thesestatisticalmeasures
don’t accuratelyreflect the power of small samplesin a
practicalcontext. Therefore,wedesignedasimplemodel
to performtheenvelope/cointaskusingvaryinglevelsof
working memory. Themodelwasintendedto reflectthe
mannerin which Kareev et al. seemto imply humans
might besolvingthis task.Themodelsimply remembers
thecontentsof thelast A cardsof eachcolorandchooses
the coin that was more frequentin that sample. If the
coinswereequally frequentin the sample,the choiceis
random.Themodelwasrunwith threesamplesizes,5, 9,
and13,meantto reflectsmall,medium,andlargeworking
memorycapacityandwasrun 1000timeson eachof the
14 distributional conditionsusedby Kareev, Lieberman,
andLev (1997).7 of theseconditionsweresymmetricin
that they usedanequalnumberof X’s andO’s and7 did
not satisfy this constraintand were termedasymmetric.
Eachsymmetricconditionhadacorrespondingasymmet-
ric onewith approximatelythesameenvelope/coincorre-
lation. The correlationbetweenthe models’predictions
andtheenvelopecolor wascomputedin thesameway as
for theexperimentalparticipants.

Figure10 shows the predictioncorrelationvaluesasa
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Figure9: Themedianobservedcorrelationin smallsam-
plesof binarydata,asa functionof samplesizeandtrue
correlation( = ).

functionof actualcorrelationfor thethreeworking mem-
ory levels, with resultsin the correspondingsymmetric
andasymmetricconditionsaveraged.The identity base-
line is providedasa reference,but notethatoptimalper-
formancein this taskhasnothingto do with matchingthe
actualcorrelationvalues. An optimal predictorwill al-
wayspredictthemorelikely coin,whethertheactualcor-
relationis 0.1 or 0.9. Contraryto Kareev et al.’s predic-
tion, thelargersamplesizeresultsin largerresponsecor-
relations,notsmallerones.Figure11givestheprediction
accuracy asafunctionof correlationandwindow size.Al-
thoughthedifferenceis fairly small, largerwindow sizes
consistentlyoutperformedthesmallerones.

Therefore,althoughthe resultsof the first experiment
in Kareev, Lieberman,and Lev (1997) are rather inter-
estinganddeserve replicationandexplanation,thesere-
sultscannotbe attributedto the effectsof small samples
on perceivedcorrelation.The probability of observinga
correlationstrongerthan a relatively sensitive detection
thresholdis lower with small samplesizesand the me-
dianobservedcorrelationvaluewith binarydatadoesnot
changesystematicallywith samplesize.A simplepredic-
tion modelthatreliesonsamplesof varyingsizeperforms
betterwith largersamples.While it is truethatthismodel
doesnot appearto fully capturehumanperformancein
this task, the relevant point is that the effects of small
samplesizeson perceived correlationdo not adequately
explain theempiricalfindings.

ThesecondexperimentreportedbyKareev, Lieberman,
andLev (1997)alsodoesnot seemto fully supporttheir
theory. In thiscase,participantswerenotblockedby digit
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Figure 10: The correlationbetweenenvelopecolor and
the models’predictionsof coin markingasa functionof
the actualcorrelationand the model’s memorywindow
size.
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Figure11: The predictionaccuracy asa function of the
actualcorrelationandthemodel’smemorywindow size.

spanbut weregivensamplesof varyingsizeuponwhich
to basea prediction. The sampleswereeitherfully visi-
ble throughouttheprocessor werepresentedsequentially
and were unavailable in formulating the prediction. In
this case,the variableswere real-valued,ratherthanbi-
nary. The resultsindicatedthat whensampleswereab-
sent,therewasbetterperformancewith thesmallsamples
thanwith themediumor largeones.Butwhenthesamples
were present,performanceincreasedwith samplesize.
This latter result is inconsistentwith the predictionthat
smallsamplesshouldstatisticallymagnifycorrelations.If
thatweretrue,largersampleswould leadto worseperfor-
mance,especiallyif thesamplesarepresent.Thefactthat
participantsviewing sequentialsamplesperformedbetter
with smalleronesis indeedinteresting,but cannotbeex-
plainedby a statisticalpropertyof samplesizeitself.

5 Cochran, McDonald, and Parault
(1999)

Much of the empirical supportfor the less-is-morehy-
pothesisderives from the study of AmericanSign Lan-
guage(ASL). Newport (1990)observedthat late learners
of ASL tend to make more morphologicalerrorsin the
productionof verbsthandoearlylearners.While interest-
ing, it is notclearto whatthisfindingshouldbeattributed.
Theproblemsincurredby latelearnerscouldbedueto de-
activationof a languageacquisitiondevice,greatercogni-
tive capacity, differenttypesor degreesof exposure,or a
varietyof otherfactors.Cochran,McDonald,andParault
(1999) soughtto provide empirical evidencesupporting
theideathatcognitivelimitationscanactuallyleadto bet-
ter learningof ASL verbs. They conductedthreeexper-
imentsin which participantsunfamiliar with ASL were
taughtsomesentencesand thentestedin their ability to
produceeitherthesameor novel ASL sentences.

In the first two experiments,participantswere taught
16 verbs. Eachverbwasencounteredin the context of a
singlesentence,in which either the subjectwas“I” and
theobjectwas“you”, or vice-versa.Six of theverbsused
congruentagreement, in which the directionof the sign
wasfrom the verb’s subject(either the signeror the ad-
dressee)to theverb’sobject.Two of theverbsusedincon-
gruentagreement, in which thedirectionof thesignwas
from objectto subject.Fournonagreementverbsrequired
astaticdirectionof motion,whichwaseitheralwaysaway
from or alwaystowardthesigner. Thelastfour verbshad
adirectionof motionalignedvertically, eitherupor down.

Participantswereexposedto eachverbin a singlecon-
text, with half of the verbsin eachcondition using the
subject“I” andhalf usingthesubject“you”. The16study
sentenceswere observed threetimes in the first experi-
mentandeighttimesin thesecondexperiment.In orderto
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placea loadon working memory, half of theparticipants
performeda tone-countingtaskduringtraining. This was
knownastheloadcondition.Participantswerethentested
on the16 familiar sentencesaswell asthe16 novel sen-
tencescreatedby reversingthesubjectandobject.

Cochran,McDonald,andParault(1999)foundthatpar-
ticipants in the no-loadcondition producedthe familiar
sentencesbetteroverall and performedbetteron famil-
iar and novel non-agreementverbs. However, partici-
pantsin the no-loadcondition did not perform as well
on the agreementverbsin novel sentences.They were
muchmorelikely to producethesignin thesamedirection
that they learnedit, ratherthanreversingthe directionin
thenew context. This wastakenasevidencethat “adults
learningundernormalconditionswerefailing to learnthe
internalstructureof thelanguageandwerethereforelim-
ited in their ability to generalizeto new contexts” (p. 30).

However, analternative readingof thedatais thatpar-
ticipantsin theloadconditionweresimplynot learningas
well andperformedmorerandomlyduringtest.Not only
did loadparticipantshave moremovementsin thecorrect
direction, they producedmore verbswith no movement
or, in thefirst experiment,with movementoutsidetheaxis
betweenthesignerandaddressee.Thefactthatloadcon-
dition participantshappenedto usethecorrectmovement
moreoften in novel conditionscanbe attributedto their
generallymore noisy behavior, rather than their having
learnedto generalizeto novel conditions.

The main problemwith theseexperimentsis that par-
ticipantsareexpectedto learnthat the movementof cer-
tain verbsshouldagreewith sentencecontext whenthere
wasno basisfor sucha generalizationin theexamplesto
which theparticipantshadbeenexposed.Eachverbwas
seenin justonecontext, with justonedirectionof motion,
andonly six of the16 verbsunderwentcongruentagree-
ment. The evidenceto which the participantswere ex-
posedfully supportsthesimplerhypothesis:thatdirection
of motionis anintrinsic,non-inflectedpartof thesignfor
a verb. In fact,this is thecorrectrule for half of theverbs
usedin theexperiment.Giventhelackof any evidenceto
the contrary, it seemsmuchmorereasonablefor partici-
pantsto surmisethatASL permitsno agreement,thanto
surmisethat someverbshave agreement,somehave in-
congruentagreement,andsomehave no agreement.The
resultsin theseexperimentsare consistentwith the hy-
pothesisthatparticipantsin theno-loadconditionlearned
thisveryreasonablerulemuchbetterthandid participants
in theloadcondition.

A true test of generalizationability must provide the
learnerwith somesupportfor thevalidity of theexpected
generalization.Hadparticipantsexperiencedsomeagree-
ment verbsusedwith different motionsin different cir-
cumstances,they would have somebasisfor expecting
thatagreementplaysa role in ASL. A secondfactorbias-

ing theparticipantsagainstformulatingthedesiredgener-
alizationwasthat,unlike in ASL, pronounswereexplic-
itly producedin all training sentences.Languageswith
strongverb inflection, suchasSpanish,often drop first-
andsecond-personpronouns,becausethey convey redun-
dantinformation. Becausesuchpronoundrop wasnot a
featureof thetrainingsentences,learnersaremorelikely
to assumethatpronominalinformationis not redundantly
conveyed in the verb form. In summary, the first two
experimentsof this study essentiallyfound that partici-
pantstrainedto performonereasonablegeneralizationdid
poorly whentestedon a different,morecomplex, gener-
alization.

The third experimentconductedby Cochran,McDon-
ald,andParault(1999)testedthelearningof ASL motion
verbs,comparingparticipantswho weretaughtto mimic
whole signsto thosewho weretaughtto mimic just one
partof eachsign,eithertheform or themotion,at a time.
During training,signsfor a certaintype of actormoving
in a certainway werepairedwith a handmovementin-
dicatingthe pathof motion. For someverbs,the motion
signis producedat thesametimeastheverb,but for other
verbsthey areproducedin sequence.During testing,all
verbswerepairedwith all pathsigns.

Overall therewasno differencein performanceon the
studiedor thenovel signsbetweenthe“whole” and“part”
learners.Therewasanunexplainedtradeoff, in thatwhole
learnersdid betterif thepartsof thenew signwereto be
performedsequentiallyandworseif they wereto beper-
formedsimultaneously. Theonly otherdifferencewasthe
marginally significanttendency for whole-practicepartic-
ipantsto producemore frozensigns,8 which could be a
causeor effect of the otherdifference. If anything, this
studyseemsto provide strongevidencethat learningin-
dividual partsof signsis not, overall, of significantben-
efit. Althoughwhole-signlearnersproducedmorefrozen
signs,they performedbetterin otherrespects,balancing
the overall performance. Somewhat disturbingly, how-
ever, more participantswere thrown out for inadequate
performanceor unscorabledata from the part-learning
group. One person in the whole-sign condition was
thrown out for unscoreabledataand9 peoplein thepart-
sign conditionwerereplaced,threefor badperformance
and two for unscoreabledata. Acrossthe threeexperi-
ments,threeparticipantswerediscardedfrom theno-load
andwhole-signconditionsfor performanceor scoreabil-
ity reasons,comparedwith 12participantsin theloadand
part-signconditions.In experimentsof thissortinvolving
a direct comparisonbetweentraining methods,eliminat-
ing participantsfor performancereasonsduring training
hasthe clearpotentialto biasthe averagetestingperfor-
mance. If participantsmust be removed from onecon-

8A frozensignwasa new signthatcontainedanunnecessarypartof
apreviously studiedsign.
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dition for performancereasons,an equalnumberof the
worst performersin the other conditionsshould be re-
movedaswell, althoughthis still maynot fully eliminate
thebias.

6 Kersten and Earles (2001)

Kersten and Earles (2001) conductedthree language
learningexperimentswhichcomparedlearningin astaged
inputconditionto learningin afull-sentencecondition.In
eachexperiment,participantsviewedeventsin which one
bug-likeobjectmovedtowardsor away from another, sta-
tionary, bug-like object. In the full-sentencecondition,
eachevent was pairedwith the auditory presentationof
a three-word sentence.The first word correspondedto
the appearanceof the moving bug and endedin “–ju”.
Thesecondworddescribedthemannerof motion—either
walking with legs togetheror alternating—andended
in “–gop”.9 The third word describedthe direction of
walking—towardsor away from thestationarybug—and
endedin “–tig”.

In the first two experiments,half of the participants
heardcompletesentencesfor the whole training period.
Theotherparticipantsinitially heardjust thefirst (object)
word for a third of thetrials, thenthefirst two words,and
finally all threewords. In the testingperiod,participants
were shown two eventsthat variedon a single attribute
andheardeitheran isolatedword (correspondingto the
manipulatedattribute)or a sentence.They wereto iden-
tify theeventthatcorrectlymatchedthewordor sentence.

The most importantfinding in theseexperimentswas
significantlybetterperformance,overall, for participants
in the stagedinput condition. KerstenandEarlesinter-
pretedthis as evidencein favor of the less-is-morehy-
pothesis.However, oneshouldexercisesomecautionin
drawing conclusionsfrom theseexperiments. Although
therewasan overall advantagefor startingsmall, if one
testsperformanceon object words, mannerwords, and
pathwordsindependently, theeffect is only significantfor
objectwords.Thus,theresultsareconsistentwith thehy-
pothesisthatstartingsmallwasonly beneficialin learning
themeaningsof theobjectwords,i.e.,thosewordstrained
in isolationfor thefirst third of thetrials.

KerstenandEarlessoughtto rule out a slightly differ-
ent,but equallyviable,hypothesis—thatthe effect relies
on the fact that the objectwords,asopposedto manner
or path,werelearnedfirst. Therefore,in the third exper-
iment,participantsin the stagedconditionfirst heardthe
last (path)word, thenthe last two words(manner-path),
and finally all threewords. Again therewas a signifi-
cantoverall advantagefor the stagedinput condition. In

9In thefirst experiment,someparticipantsheardobject-manner-path
wordorderandothersheardobject-path-manner.

this case,pathwordswerelearnedbetterthanobjectand
mannerwords in both conditions. Although the overall
advantagefor thestartingsmallconditionreachedsignif-
icance,noneof the testsisolating the threeword types
weresignificant. Theseresultsthereforedo not rule out
the hypothesisthat participantsin the stagedinput con-
dition wereonly betteron the wordstrainedin isolation.
Nevertheless,it is possiblethat theseeffectswould reach
significancewith moreparticipants.

The third experimentalso addeda test of the partici-
pants’sensitivity to morphology. Novel wordswerecre-
atedby pairing an unfamiliar stemwith oneof the three
familiarwordendings(–ju, –gop,or –tig). Eachwordwas
first pairedwith aneventthatwasnovel in all threeimpor-
tant dimensions.Participantswerethenshown a second
eventthatdifferedfrom thefirst in asingledimensionand
wereinstructedto respond“Yes” if thesecondeventwas
alsoanexampleof thenew word. In otherwords,partic-
ipantsresponded“Yes” if the two eventsdidn’t differ on
thefeatureassociatedwith theword ending.Kerstenand
Earlesagainfounda significantadvantagefor thestarting
smallcondition.

However, thereis somereasonto questionthe results
of this experiment.With thepath-wordending,therewas
clearlynodifferencebetweenthetwo conditions.In three
of thefour otherconditions,participantsperformedbelow
chancelevels,significantlysoin oneof them.Thefinding
of significantly below chanceperformanceleadsone to
suspectthat participantsmay have beenconfusedby the
taskandthatsomeparticipantsmayhaveincorrectlybeen
responding“Yes” if the eventsdid differ on the feature
associatedwith theword ending.

Even if we acceptthat therewas an across-the-board
advantagefor the stagedinput condition in theseexper-
iments,we shouldbe cautiousin generalizingto natural
languagelearning. The languageusedin this studywas
missinga numberof important featuresof natural lan-
guage.Word orderandmorphologywereentirely redun-
dantand,moreimportantly, conveyednomeaning.Words
always appearedin the sameposition in every sentence
and were always pairedwith the sameending. In this
simplelanguage,therewasn’t aproductivesyntaxor mor-
phology, justaconventionalwordorder. Participantswere
thusfreeto usestrategiessuchasignoringwordorderand
morphologicalinformation, much as they learnedto ig-
noremeaninglessdetailsof theevents.

Participantsin the full sentenceconditionwerethere-
fore at a potentialdisadvantage. Any effective, general
learningmechanismin a similar situationwould devote
timeandresourcesto testingtheinformationcarriedin all
aspectsof the eventsandsentences,including morphol-
ogyandword order. In this case,thosefeatureshappened
to convey no additionalinformationbeyondthatprovided
by the word stemsthemselves,placingparticipantswho
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paid attentionto word order and morphologyat a dis-
advantage. However, thesefactorsplay critical roles in
shapingthe meaningof naturallanguagesentences,and
devoting time and resourcesto learningthem is useful,
andevennecessary. Thestagedinput learner, on theother
hand,will have tradedoff exposureto syntaxfor more
exposureto individual wordsandtheir meanings,which
is not clearly advantageous.A strongertest of the im-
portanceof stagedinputwouldbeto measurecomprehen-
sionorproductionof whole,novelsentencesin alanguage
with someaspectsof meaningcarriedexclusively by syn-
taxandmorphology.

Perhapstellingly, somestudiescited by Kerstenand
EarlescomparingchildrenlearningFrenchin immersive
programswith andwithout prior exposureto moretradi-
tional, elementaryFrench-as-a-second-language courses
found either no differenceor an advantagefor children
in thepurelyimmersiveprograms(Shapson& Day, 1982;
Day & Shapson,1988;Genesee,1981). Although these
studiesmaynot haveadequatelycontrolledfor ageof ex-
posure,intelligence,or motivational factors,it certainly
is suggestive thatstagedinput maybe lesseffective than
immersionin learningnaturallanguages.

A final point of criticism of the Kerstenand Earles
(2001)paperis their desireto equatetheeffectsof staged
input with thoseof internal memorylimitations. There
is little reasonto believe that thesetwo factorswill have
similar effects. Teachingthemeaningsof isolatedwords
is boundto be helpful, provided that it is only a supple-
mentto exposureto completelanguage,is relatively noise
free, andmakesup a relatively small percentageof lin-
guistic experience.However, memorylimitations do not
resultin thesamesimplepairingof wordsandtheirmean-
ings. At best,memorylimitationshave theeffect of pair-
ing isolatedwordsor phrasesto noisy, randomlysampled
portionsof a complex meaning. The actualpart of the
complex meaningcontributedby the isolatedword may
be partially or completelylost and someextraneousin-
formationmayberetained.Learningthecorrectpairings
of wordsto meaningsis no easierin this casethanwhen
facedwith thefull, complex meaning.

A moreappropriate,thoughstill not entirelysufficient,
testof thebenefitof memorylimitationsin thecontext of
KerstenandEarles’sdesignwouldbeto testrandomlyse-
lectedwords in the isolatedword condition, ratherthan
alwaysthefirst or lastwordof thesentence.Theseshould
bepairedwith sceneswith randomlyselecteddetails,such
astheidentity of themoving objector thelocationof the
stationaryobject,obscured.Furthermore,testsshouldnot
beperformedon familiar sentencesbut on novel ones,as
thepotentialproblemin startingwith completesentences
is thatadultswill memorizethemaswholesandwill not
generalizewell to novel ones. It would be quite inter-
estingif initial training of this form, which is more like

the presumedeffect of poor attentionor working mem-
ory, wasbeneficialin thecomprehensionor productionof
novel sentences.

The actualclaim of Newport’s less-is-morehypothe-
sis doesnot concernstagedinput. It is that memoryor
other internal limitations are the key factor in enabling
childrento learnlanguagemoreeffectively. Evidencefor
or againstthebenefitof stagedinputshouldbeclearlydis-
tinguishedfrom evidenceconcerningtheeffectof internal
cognitive impairments.

7 General Discussion

We believe that studyingthe way in which connectionist
networks learnlanguagesis particularlyhelpful in build-
ing anunderstandingof humanlanguageacquisition.The
intuition behindthe importanceof startingwith properly
chosensimplifiedinputsis thatit helpsthenetwork to fo-
cusimmediatelyon themorebasic,localpropertiesof the
language,suchaslexical syntacticcategoriesandsimple
noun-verbdependencies.Oncethesearelearned,thenet-
work can more easily progressto hardersentencesand
furtherdiscoveriescanbebasedontheseearlierrepresen-
tations.

Our simulationresultsindicate,however, thatsuchex-
ternalmanipulationof thetrainingcorpusis unnecessary
for effectivelanguagelearning,givenappropriatetraining
parameters.Thereason,we believe, is thatrecurrentcon-
nectionistnetworksalreadyhave an inherenttendency to
extractsimpleregularitiesfirst. A network doesnot begin
with fully formed representationsand memory; it must
learnto representandrememberusefulinformationunder
thepressureof performingparticulartasks,suchasword
prediction. As a simplerecurrentnetwork learnsto rep-
resentinformationaboutan input usingits hiddenunits,
that informationthenbecomesavailableascontext when
processingthenext input. If this context providesimpor-
tant constraintson the predictiongeneratedby the sec-
ond input, the context to hiddenconnectionsinvolved in
retainingthat informationwill be reinforced,leadingthe
informationto beavailableascontext for thethird input,
andsoon.

In this way, thenetwork first learnsshort-rangedepen-
dencies,startingwith simpleword transitionprobabilities
for which no deepercontext is needed.At this stage,the
long-rangeconstraintseffectively amountto noisewhich
is averagedoutacrossalargenumberof sentences.As the
short-dependenciesare learned,the relevant information
becomesavailablefor learninglonger-distancedependen-
cies.Very long-distancedependencies,suchasgrammat-
ical constraintsacrossmultiple embeddedclauses,still
presenta problemfor this typeof network in any training
regimen.Informationmustbemaintainedacrosstheinter-
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veningsequenceto allow thenetwork to pick up on such
a dependency. However, theremustbepressureto main-
tain that information or the hidden representationswill
encodemorelocally relevant information. Long-distance
dependenciesaredifficult becausethe network will tend
to discardinformationaboutthe initial cuebeforeit be-
comesuseful. Adding semanticdependenciesto embed-
ded clausesaids learningbecausethe network then has
an incentive to continueto representthe main noun,not
just for thepredictionof themainverb,but for thepredic-
tion of someof the interveningmaterialaswell (seealso
Cleeremansetal., 1989).10

It might bethoughtthatstartingwith simplified inputs
would facilitatetheacquisitionof the local dependencies
so that learningcould progressmore rapidly and effec-
tively to handlingthe longer-rangedependencies.There
is, however, a cost to altering the network’s training en-
vironmentin this way. If the network is exposedonly to
simplifiedinput,it maydeveloprepresentationswhichare
overly specializedfor capturingonly local dependencies.
It then becomesdifficult for the network to restructure
theserepresentationswhenconfrontedwith harderprob-
lemswhosedependenciesarenot restrictedto thosein the
simplified input. In essence,the network is learningin
anenvironmentwith a nonstationaryprobabilitydistribu-
tion over inputs. In extremeform, suchnonstationarity
canleadto so-calledcatastrophic interference, in which
trainingexclusivelyonanew taskcandramaticallyimpair
performanceonapreviously learnedtaskthatis similar to
but inconsistentwith thenew task(see,e.g.,McClelland,
McNaughton,& O’Reilly, 1995; McCloskey & Cohen,
1989).

A closely relatedphenomenonhasbeenproposedby
Marchman(1993)to accountfor critical periodeffectsin
the impact of early brain damageon the acquisitionof
English inflectional morphology. Marchmanfound that
the longera connectionistsystemwastrainedon thetask
of generatingthe pasttenseof verbs, the poorer it was
at recoveringfrom damage.This effect wasexplainedin
termsof thedegreeof entrenchmentof learnedrepresen-
tations:As representationsbecomemorecommittedto a
particularsolutionwithin thepremorbidsystem,they be-
comelessableto adaptto relearninga new solutionafter
damage.More recently, McClelland(2001)andThomas
andMcClelland(1997)have usedentrenchment-like ef-
fectswithin a Kohonennetwork (Kohonen,1984)to ac-
countfor theapparentinability of non-nativespeakersof

10It shouldbe pointedout that the bias towards learningshort- be-
fore long-rangedependenciesis not specific to simple recurrentnet-
works;backpropagation-through-time andfully recurrentnetworksalso
exhibit this bias. In thelattercase,learninglong-rangedependenciesis
functionallyequivalentto learninganinput-outputrelationshipacrossa
largernumberof intermediateprocessinglayers(Rumelhartetal.,1986),
which is moredifficult thanlearningacrossfewer layerswhenthemap-
ping is simple(seeBengioet al., 1994;Lin et al., 1996).

a languageto acquirenative-level performancein phono-
logicalskills, andwhy only a particulartypeof retraining
regimenmay prove effective (seealso Merzenichet al.,
1996; Tallal et al., 1996). Thus, thereare a numberof
demonstrationsthatconnectionistnetworksmaynot learn
aseffectively when their training environmentis altered
significantly, asis thecasein theincrementaltrainingpro-
cedureemployedby Elman(1991).

Therehasbeenmuch debateon the extent to which
children experience syntactically simplified language
(see,e.g.,Richards,1994;Snow, 1994,1995,for discus-
sion).While child-directedspeechis undoubtedlymarked
by characteristicprosodicpatterns,thereis alsoevidence
thatit tendsto consistof relatively short,well-formedut-
terancesand to have fewer complex sentencesand sub-
ordinateclauses(Newport, Gleitman,& Gleitman,1977;
Pine,1994). Thestudyby Newport andcolleaguesis in-
structive here,asit is often interpretedasproviding evi-
dencethat child-directedspeechis not syntacticallysim-
plified. Indeed,theseresearchersfoundno indicationthat
motherscarefully tunetheir syntaxto thecurrentlevel of
the child or that aspectsof mothers’speechstyleshave
a discernibleeffect on the child’s learning. Nonetheless,
it wasclear that child-directedutterances,averaging4.2
words, were quite unlike adult-directedutterances,av-
eraging11.9 words. Although child-directedspeechin-
cluded frequentdeletionsand other forms that are not
handledeasilyby traditionaltransformationalgrammars,
whetheror not theseserve ascomplexities to thechild is
debatable.

If childrendo, in fact, experiencesimplified syntax,it
might seemasif our findingssuggestthat suchsimplifi-
cationsactually impedechildren’s languageacquisition.
We do not, however, believe this to bethecase.Thesim-
plerecurrentnetwork simulationshavefocusedon theac-
quisitionof syntacticstructure(with somesemanticcon-
straints),which is justasmallpartof theoverall language
learningprocess.Amongotherthings,thechild mustalso
learn the meaningsof words, phrases,and longer utter-
ancesin the language. This processis certainly facili-
tatedby exposingthechild to simpleutteranceswith sim-
ple,well-definedmeanings.WesupportNewportandcol-
leagues’conclusionthattheform of child-directedspeech
is governedby adesireto communicatewith thechild and
not to teachsyntax.However, we would predictthat lan-
guageacquisitionwouldultimatelybehinderedif particu-
lar syntacticor morphologicalconstructionswereavoided
for extendedperiodsin theinput to eithera child or adult
learner.

But themainimplicationof theless-is-morehypothesis
is not that stagedinput is necessary, but that the child’s
superiorlanguagelearningability is a consequenceof the
child’s limitations. This might be interpretedin a variety
of ways.Goldowsky andNewport (1993),Elman(1993),
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Kareev, Lieberman,and Lev (1997), and Cochran,Mc-
Donald,andParault(1999)suggestthat the power of re-
ducedmemoryis that it leadsto information losswhich
canbe beneficialin highlighting simplecontingenciesin
the environment. This, it is suggested,encouragesana-
lytical processingover rote memorization. We have ar-
gued,to the contrary, that in a rangeof learningproce-
dures,from simpledecisionmakingmodelsto recurrent
connectionistnetworks, suchrandominformationlossis
of nobenefitandmaybeharmful.Althoughit sometimes
hasthe effect of isolatingmeaningfulanalyticalunits, it
moreoftendestroys thoseunitsor createsfalsecontigen-
cies.

Another take on the less-is-morehypothesisis that a
learningsystemcanbenefitby beingdifferentiallysensi-
tive to local informationor simple input/outputrelation-
ships. This we do not deny. In fact, it seemsdifficult to
conceiveof aneffectivelearningprocedurethatis notbet-
ter ableto learnsimplerelationships.A relatedargument
is that whenthe mappingto be learnedis componential,
a learningprocedurespecializedfor learningsuchmap-
pings,asopposedto onespecializedfor rote memoriza-
tion, is to be preferred.This, too, we support.However,
we suggestthatneuralnetworks—and,by possibleimpli-
cation,the humanbrain—arenaturallybetterat learning
simpleor localcontingenciesandregular, ratherthanarbi-
trary, mappings.But thisis trueof learningin experienced
networksor adults,justasit is trueof learningin random-
izednetworksor children.Thegeneralarchitectureof the
systemis the key factorthat enableslearningof compo-
nentiality, not thechild’s limited working memory.

Simulatingpoorworking memoryby periodicallydis-
rupting a network’s feedbackduring the early stagesof
learninghasrelatively little effect because,at that point,
the network hasnot yet learnedto useits memoryeffec-
tively. As long asmemoryis interferedwith lessasthe
network develops,therewill continueto be little impact
on learning. In a sense,early interferencewith the net-
work’s memoryis superfluousbecausetheuntrainednet-
work is naturallymemorylimited. Onemight saythat is
theverypointof theless-is-moreargument,but it is miss-
ing avital component.While weacceptthatchildrenhave
limited cognitive abilities,we don’t seetheselimitations
asa sourceof substantiallearningadvantageto thechild.
Both aresymptomsof the fact that thechild’s brain is in
an early stagein developmentat which its resourcesare
largely uncommitted,giving it greatflexibility in adapt-
ing to theparticulartasksto which it is applied.

7.1 Late Exposure and Second Languages

Elman’s (1991,1993)computationalfindingsof the im-
portanceof startingsmallin languageacquisition,aswell
as the other studiesreviewed here, have beeninfluen-

tial in part becausethey seemedto corroborateempiri-
cal observations that languageacquisitionis ultimately
moresuccessfulthe earlier in life it is begun (seeLong,
1990). While older learnersof either a first or a sec-
ond languageshow initially fasteracquisition,they tend
to plateauat lower overall levelsof achievementthando
youngerlearners.The importanceof early languageex-
posurehasbeencited asan argumentin favor of either
an innatelanguageacquisitiondevice which operatesse-
lectively during childhood or, at least, geneticallypro-
grammedmaturationof the brain which facilitateslan-
guagelearningin childhood(Johnson& Newport, 1989;
Newport, 1990; Goldowsky & Newport, 1993). It has
beenarguedthatthefactthatlatefirst- or second-language
learnersdo not reach full fluency is strong evidence
for “maturationallyscheduledlanguage-specificlearning
abilities” (Long,1990,p. 259,emphasisin theoriginal).

We would argue,however, that the dataregardinglate
languageexposure can be explained by principles of
learning in connectionistnetworks without recourseto
maturationalchangesor innatedevices.Specifically, adult
learnersmay not normally achieve fluency in a second
languagebecausetheir internalrepresentationshavebeen
largely committedto solvingotherproblems—including,
in particular, comprehensionandproductionof their na-
tivelanguage(seeFlege,1992;Flege,Munro,& MacKay,
1995).Theaspectsof anadult’s secondlanguagethatare
mostdifficult maybethosethatdirectly conflict with the
learnedpropertiesof the native language.For example,
learningthe inflectional morphologyof Englishmay be
particularlydifficult for adultspeakersof anisolatinglan-
guage,suchasChinese,which doesnot inflectnumberor
tense.

By contrastto the adult, the child ultimately achieves
a higher level of performanceon a first or secondlan-
guagebecausehis or her resourcesare initially uncom-
mitted,allowing neuronsto bemoreeasilyrecruitedand
the responsecharacteristicsof alreadyparticipatingneu-
ronsto bealtered.Additionally, thechild is lesshindered
by interferencefrom prior learnedrepresentations.This
idea,which accordswith QuartzandSejnowski’s (1997)
theory of neural constructivism, is certainly not a new
one,but is onethat seemsto remainlargely ignored(al-
thoughseeMarchman,1993;McClelland,2001).On this
view, it seemsunlikely that limitations in a child’s cog-
nitive abilities are of significantbenefitin languageac-
quisition. While adults’ greatermemoryand analytical
abilitiesleadto fasterinitial learning,thesepropertiesare
not themselvesresponsiblefor thelowerasymptoticlevel
of performanceachieved,relative to children.

Along similar lines, the detrimental impact of de-
layedacquisitionof a first languagemay not implicatea
language-specificsystemthat hasshutdown. Rather, it
maybethat,in theabsenceof linguistic input, thoseareas
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of thebrainwhichnormallybecomeinvolvedin language
mayhave beenrecruitedto performotherfunctions(see,
e.g., Merzenich& Jenkins,1995, for relevant evidence
anddiscussion).While it is still sensibleto referto a crit-
ical or sensitive periodfor theacquisitionof language,in
the sensethat it is importantto start learningearly, the
existenceof a critical periodneednot connotelanguage-
acquisitiondevicesor geneticallyprescribedmaturational
schedules.

Indeed,similarcritical periodsexist for learningto play
tennisoramusicalinstrument.Rarelyif everdoesanindi-
vidual attainmasterfulabilitiesat eitherof thesepursuits
unlessheor shebeginsat an earlyage. And certainlyin
the caseof learningthe pianoor violin, remarkableabil-
ities canbe achieved by late childhoodandare thusnot
simply the resultof the many yearsof practiceafforded
to thosewho startearly. Onemight addthat no species
otherthanhumansis capableof learningtennisor thevi-
olin. Nevertheless,wewouldnotsupposethattheseabili-
tiesrely upondomain-specificinnatemechanismsor con-
straints.

While generalconnectionistprinciplesmayexplain the
overall patternof resultsin late languagelearning,con-
siderablework is still neededto demonstratethat this ap-
proachis sufficient to explain the rangeof relevant de-
tailedfindings.For example,it appearsthatvocabulary is
moreeasilyacquiredthanmorphologyor syntax,andthat
secondlanguagelearnershavevariablesuccessin master-
ing differentsyntacticrules(Johnson& Newport, 1989).
In futurework, we intendto developsimulationsthat in-
cludecomprehensionandproductionof morenaturalistic
languages,in orderto extendour approachto addressthe
empirical issuesin late second-languagelearningandto
allow us to modela wider rangeof aspectsof language
acquisitionmoredirectly.

7.2 Conclusion

We seemto bein agreementwith mostproponentsof the
less-is-morehypothesisin our belief that the properac-
count of humanlanguagelearningneednot invoke the
existenceof innate language-specificlearning devices.
However, wedepartfrom themin ourskepticismthatlim-
ited cognitive resourcesarethemselvesof critical impor-
tancein theultimateattainmentof linguistic fluency. The
simulationsreportedhere,principally thoseinspiredby
Elman’s language-learningwork, call into questionthe
proposalthat stagedinput or limited cognitive resources
arenecessary, or evenbeneficial,for learning.We believe
thatthecognitivelimitationsof childrenareonly advanta-
geousfor languageacquisitionto theextent that they are
symptomaticof a systemthat is unorganizedand inex-
periencedbut possessesgreatflexibility andpotentialfor
futureadaptation,growth andspecialization.
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