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Multidimensionalscaling (MDS), roughly speaking,is the processof transforminga set of

pointsin a high dimensionakpaceto a lower dimensionalonewhile preservingthe relative

distancedetweerpairsof points. Althougheffective methodshave beendevelopedfor solving

avariety of MDS problemsthey mainly dependbnthevectorsin thelower dimensionakpace
having real-\aluedcomponentsFor someapplicationsthetraining of neuralnetworksin par

ticular, it is preferableor necessaryo obtainvectorsin adiscrete binaryspace Unfortunately
MDS into alow-dimensionadiscretespaceappeargo be a significantlyharderproblemthan
MDS into a continuousspace. This paperintroducesand analysesereral differentmethods
for performingapproximatelyoptimized,binary MDS.

1. INTRODUCTION

Recentapproacheso artificial intelligenceand machine
learninghave cometo rely increasinglyon data-drvenmeth-
odsthatinvolvelargevectorspacesOneapplicationof high-
dimensionalvectorsthat is particularly relevanttodayis in
representinghe contentsof large collectionsof documents,
suchas all texts available on the internet. The similarity
structurein thesevectorspacesanbe exploited to perform
avarietyof usefultasks,ncludingsearchingglustering,and
classification(see,e.g., DeerwesterDumais, Furnas,Lan-
dauer& Harshman1990;Berry, Dumais,& O'Brien, 1994).
Other popularapplicationsof vector spacesinclude repre-
sentingthe contentof images(Beatty & Manjunath,1997)
andthemeaning®f words(Lund & Burgess,1996;Burgess,
1998;Clouse,1998).

However, it is often inefficient, if not intractableto per
form complex analysedirectly in high-dimensionaiector
spaceslf onecouldreducethe setof high-dimensionalec-
torsto a setof vectorsin a muchlower-dimensionalspace,
while preservingtheir similarity structure operationscould
be performedmoreefficiently on the smallerspacewith the
potentialaddedbenefitof improved resultsdue to reduced
noiseandgreatergeneralizationScalingto a spacewith just
one,two, or threedimensionsalsopermitseasyvisualization
of theresultingspacewhich canleadto a betterunderstand-
ing of its overall structure.

In orderto placethe currentwork in an historicalframe-
work, let usbriefly tracethe developmenbf modernmultidi-
mensionalscaling(MDS) techniques.Most applicationsof
MDS, particularlyin the psychologicadomains have been
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in theanalysisof humansimilarity ratings.Thus,ratherthan
beginning with pointsin a high dimensionalvector space,
a more commonstarting point hasbeena matrix of pair-

wise comparison®f a setof items. Varioustypesof com-

parisonamight be used,including similarity or dissimilarity
judgmentsgconfusionprobabilitiesor interactionrates.One
problemintroducedby theuseof measuresf this sortis that
it isn’'t clearhow bestto scaletheseratingssothatthey cor-

responddirectly to distancedn the vectorspace. Subjects’
ratingsmay be quite skewedandarelik ely to be non-metric.

Perhapshe earliestexplicit and practical MDS method
was that of Torgerson(1952), which grew out of the work
of Richardson(1938) and Young and Householde(1938),
amongothers. Torgersonuseda one-dimensionatcaling
techniqueto corvert dissimilarity ratingsto targetdistances
andthenattemptedo find a setof pointswhosepairwiseEu-
clideandistancesdestmatchedthe target distancesaccord-
ing to mean-squaredrror. Theinitial scalingfunctionmight
simply be a linear transformationor could be a non-linear
function, suchasan exponential. While quite effective, the
formalrequirementsf thistechniquearetoo strongfor mary
applicationsanda seriousdrawvbackis that the properscal-
ing methodis difficult to determineandmay vary from one
problemto the next.

The next major advancewas madeby Shepard(1962),
who suggestedhat, ratherthanattemptingto directly match
scaledamgetdistancesthegoalof MDS shouldbeto obtaina
monotoneelationshibetweentheactualpointdistancesind
theoriginal dissimilarities.Thus,the dissimilaritiesneednot
be scaledandtheir valuesareactuallydiscardedhltogether
All thatis retaineds their relative ordering.Torgersons ear
lier approactcameto beknown asmetric MDS andthis new
techniqueasnon-metric MDS. However, Shepardlidn’t pro-
vide a mathematicallyexplicit definition of what constitutes
asolution.

Kruskal (1964a,1964b)further developedthe methodby
explicitly defininga function, known as stress, relatingthe
pairwisedistancesandthe ranking of dissimilarities. Stress
essentiallyinvolves the scaledsum-squarederror between
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the pairwisedistancesandthe best-fittingmonotonictrans-
formationof the original dissimilarity ratings. Iterative gra-
dientdescentvasusedto find theconfiguratiorwith minimal
stress.

The basictechniquedevelopedby Shepardand Kruskal
has remainedthe standardfor most applicationsof MDS
to psychologicaphenomengShepardRomney, & Nerlove,
1972; Borg & Groenen,1997). Although possiblyslower,
gradientdescentechniquesave the advantageover matrix-
algebramethodsin thatthey canmore easilytoleratemiss-
ing or sparsalataandcanbe usedto minimize ary differen-
tiable measureof stress.Non-metricMDS is quite effective
whensimilarity ratingsinvolve unknown distortions. How-
ever, relying on rank order sometimesliscardsinformation
thatcant be recovered(Torgerson,1965). This may be par
ticularly truein casesherethestructureof thedatainvolves
a numberof tight clustersthat arewell separateqdShepard,
1966). Thus,metricmethodsmay be moresuitablefor some
typesof data,but for the vastmajority of problemsof prac-
tical interestnon-metricmethodsarelik ely to beasgood,if
notbetter

A commonfeatureof the MDS techniquesliscussedhus
far is that they rely on the final vector spacehaving real-
valued components. However, some applicationsrequire
vectorswith discrete,usually binary, components.Thatis,
thevectorsshouldlie atthe cornersof a unit hypercube An
importantapplicationof this typeis the developmentof rep-
resentationsor training neuralnetworks. Increasingly neu-
ral networksthatsene ascognitive modelsaretrainedusing
inputsor targetsderivedfrom realdata ratherthanartificially
generated/ectorsets. But thosedatasetsmay involve vec-
torsof high dimensionality possiblyin thetensor hundreds
of thousandsandit would be computationallyintractableto
train a network usingsuchlargevectors.

Furthermore neural networks with thresholdedoutputs,
particularlyrecurrentattractornetworks (Pearlmutter1989;
Plaut& Shallice,1993),oftenlearnbetterwhentheir vector
targetsusebinarycomponentslt is harderfor the network to
accuratelydrive outputunitsto intermediatdevelsof actva-
tion thanto drivethemto fully active orinactive statesThus,
it is sometimesiecessaryo scalea setof high-dimensional
vectorsto arelatively low-dimensionalbinaryvectorspace.

BinaryMDS (BMDS) is amuchhardeproblemthanstan-
dardMDS. In fact,it hasbeenshavnthatembeddingametric
distancespacen a bit spacewith minimal distortionis NP-
complete(Deza& Laurent,1997)! Thus, thereis a good
chancehatno polynomial-timealgorithmexiststo compute
an optimal setof BMDS vectors. However, it may still be
possibleto efficiently computean approximatiorto the opti-
mal BMDS solution.

This paperpresentsseveral methodsfor performing ap-
proximatelyoptimalBMDS. The solutionsfall in two broad
classes:thosethat performthe optimizationdirectly in bit
spaceand so-calledhybrid methodsthat performthe opti-
mization in a real-valued spacebefore corverting to a bit
space.

The first hybrid methodis somevhat similar to Torger
sons linearalgebraicapproachto MDS. It begins by com-

putingthe singularvaluedecompositiorof the matrix of ini-

tial vectors. The right singularvectorsare then corverted
to bits using a unary encoding,with more bits assignedo

vectorshaving largersingularvalues.

Two other hybrid methodsare basedon Shepardand
Kruskal'stechniqueor MDS. Gradientdescents performed
in a real-valuedvector spaceusing the stresscost function
beforethe vectorcomponentarecorvertedto bits basedon
their signs. One of thesevariantsis metric in that it uses
the actualtarget valuesin computingthe stress. The other
methodusesa monotonictransformatiorof thetargetvalues,
ratherthanthevaluesthemseles.

The major problemwith hybrid techniquess thatimpor-
tant information can be lost in the discretization. A very
good real-valuedsolution may turn into a very bad binary
solution. An alternatve approachis to perform the bulk
of the optimizationdirectly in bit space. The only known
prior algorithmfor computingBMDS directly in bit spacds
thatof ClouseandCottrell (1996)andClouse(1998). Their
methodbeganby creatinga setof bit vectorsfor eachitem
by thresholdingvaluesfrom the original high-dimensional
vector They then performeda randomwalk by repeatedly
selectingpits at random,computingwhetherflipping the bit
wouldimprovetheoverallcost,anddoingsoonly whenben-
eficial. Onceit wasdeterminedhatno improvementscould
be madeby flipping ary onebit, thealgorithmterminated.

Onedrawbackof the ClouseandCottrell methodis thatit
is computationallyinefficient. Without goodrecordkeeping,
it is costly to determinewhethera bit flip is advantageous.
As the numberof remaininggoodbits diminishes the algo-
rithm becomedessandlessefficientbecausenary bits must
be testedbeforeary progresscanbe made. The alternatie,
exhaustyely testingall bits beforedecidingwhich to flip, is
not muchbetter Thus,the algorithmdoesnt scalewell to
largerproblems.

The first fully-binary method presentechereis an im-
provedversionof ClouseandCottrell's algorithm. By using
carefulrecordkeepingiit is ableto keeptrack of the change
in costthatwould resultfrom flipping ary bit andto quickly
find thebit thatwould resultin thegreatesimprovement.Al-
thoughthereis somecostfor the recordkeeping,it is more
thanmadeup for by the fact that the algorithm neednever
testa bit only to discover that flipping it would be counter
productive. A moreeffective,thoughlessefficient, versionof
this algorithmminimizesthe sumof the squaredifference
betweenactualandtarget distancesratherthanthe sum of
theabsolutedifferences.

! Actually, it is NP-completeo decidewhetherametricdistance
spaceis £1-embeddablavith no distortion. It follows thatfinding
a minimally distortedembeddingof a metric spaceinto a binary
spaceunderan/; distancemeasurgsuchasHammingdistance)s
NP-complete However, the original setof distancesn the BMDS
problemsconsiderechereare more restrictedthan a metric space
becausehey representistancedetweerpairsof points. Thus,the
known proof may not apply Neverthelessit seemdikely thatde-
cidingwhetheran/,- or /;-embeddablenetricspacds embeddable
in an/1-spaceof lowerdimensionalityis alsoanNP-completgrob-
lem.
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The final methodintroducedin this study constructsthe
bit vectorssequentiallychoosingthefirst bit in eachvector,
followed by the secondbit in eachvector andsoon. The
algorithmtheniteratesseveraltimes, reassigninghe bits in
eachdimensiongiven the otherbits previously chosen.Al-
thoughsimpleandrelatively easyto implement this method
is quitefastandeffective.

Thenext sectionintroduceghe tasksandmetricsusedto
evaluatethe BMDS methods Eachmethodis thendescribed
in further detail,including the detailsof its implementation,
adwantagegnddisadwantagesandsomepossiblevariations.
Finally, the methodsare evaluatedin termsof performance
andrunningtime. It is hopedthatthis studywill prove useful
to researchermterestedn immediateapplicationof binary
multidimensionalscalingandthatit will inspire future ad-
vancedn thesemethods.

2. EVALUATION METRICS AND
EXAMPLE TASKS

Beforedescribingthe actualBMDS algorithms,we begin
by definingthescalingtaskmoreexplicitly. Theinputis aset
of N real-valuedvectorsof dimensionalityM, representingN
items. The outputis a setof N bit-vectorswith dimension-
ality D. Thegoalis for therelative distancedetweerthefi-
nal vectorsto reflecttherelative distancedetweertheinitial
vectorsascloselyaspossible. To make this moreconcrete,
we mustdefinethefunctionsmeasuringairwisedistancen
theoriginal andfinal spacesndameasuref how well these
two setsof distancesgree.

Thereareanumberof reasonablelistancemetricsfor the
originalspacefour of whichareshovnin Tablel. Euclidean
distanceor city-block distanceare standarcchoices. How-
ever, they aredependenbn the dimensionality M, andthe
scalingof thevectorsmakingthemsomeavhatincorvenient.
Cosineis anothereasonablehoice. It is scaleinvariantand
is confinedto a fixed range,[—1, 1], which is more corve-
nientthanmeasureshatdependn dimensionalityandaver
agevaluemagnitude.

A fourth possibility, andthe one usedin this study is to
basethedistancemeasuren Pearsors correlation.Lik e co-
sine, it is scaleinvariantandis confinedto a fixed range,
[-1,1]. Computationallycorrelationandcosineareidenti-
cal exceptthat cosineis calculatedusing the actualvector
componentsvhile correlationis basedn thedifferencese-
tweenvectorcomponentsindtheirmean.If componentsire
evenlydistributedbetweerpositive andnegative values their
meanis usuallycloseto zeroandcosineandcorrelationare
quite similar. But if componentsre constrainedo be non-
negative, cosinewill be positive while correlationcontinues
to usethefull [—1, 1] range.Correlationis thusagoodinitial
choicefor mary scalingproblems. In practice,using cor-
relationhasleadto betterresultsthanusingthe otherthree
measuresvith severaldifferenttasksandBMDS algorithms.

In orderto turn correlationinto a distancemeasureijt is
scaledby —0.5 andshiftedby 0.5sothata correlationof 1.0
becomesa distanceof 0 anda correlationof -1.0 becomes

Distance M easure Formula
City-block > X — Ykl
Euclidean > k(% — Yk)?
Cosine 0.5— 0.5—2kXdh

TG SkYE
Correlation 0.5— 0.5 2k My)

VI kO—R2 3k (Y=9)?

Tablel

Some candidate distance measures.

a distanceof 1.0. The setof all pairwise correlationdis-
tancesvasthenscaledby a constanfactorto achiezeamean
valueof 0.5, althoughthis haslittle practicaleffect because
the meandistanceendedo bevery closeto 0.5 beforescal-
ing. This linearly transformectorrelationwill bereferredto
ascorrelation distance. Althoughit wasnot donehere,one
could scalethe resulting valuesusing an exponentialwith
exponentgreaterthan 1 to increasethe influenceof larger
distance®r lessthan1 to enhancehe smallerdistances.

The simplestandmostreasonablehoicefor the distance
metricin bit spaceseemsto be Hamming(city-block) dis-
tance.Thatis, the distancebetweertwo vectorsis the num-
ber of bits on which they differ. Note that for bit vectors,
Euclideandistanceis just the squareroot of the Hamming
distance.Likewise, if the bit vectorstendto have a roughly
equalnumberof 1sand0s,which seemgo bethe casewith
mostof theseBMDS methodsn practice Hammingdistance
is closelyapproximatedy correlationdistancgwhenscaled
by D).

The third function that we must specify evaluatesthe
agreemenbetweenthe correlationdistancesn the original
spaceandthe Hammingdistancesn thefinal binary space.
It's not entirely clearwhatis the bestmeasure Oneobvious
choiceis to useKruskal’s stress (Kruskal,1964a):

Yicj(dij —tij)
Zi<jdﬁ

wherei and j togetheiiterateover all pairsof items,d;j is
the Hammingdistanceof i and j’s bit vectorsandt;j is the
correlationdistanceof i and j’s initial vectors scaledby the
dimensionalityof thebit vectors D.

An alternatve form of this measureandthe oneactually
usedby Kruskal,is non-metricstress.in this casetheactual
distancesrenotdirectly comparedo thetargetdistancesut
to thebestmonotonictransformatiorof thetargetdistances:

metric stress =

Zi<j dizj

non-metric stress =

wheredAi j arethosevaluesthatachiese minimal stressun-

der the constraintthat the d;; have the samerank orderas
the corresponding;j. Non-metricstressis a bettermeasure
if oneis only concernedvith preservingherank-orderela-
tionshipbetweerpairwisedistancesBut if oneis concerned
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with directly matchingthe target distancesmetric stressis
preferable.

An alternatve methodof evaluatingthe final vectorsis
to computePearsors correlationbetweerthe original setof
pairwisedistanceamongvectorsandthoseof thefinal vec-
tors. This measurds referredto here as goodness and is
definedmathematicallyasfollows:

Yicj(dij—d)(tij —t)
\/2i<j(dij —d)23;(t; — 1)

Note that the optimal stressvalue is 0 and the optimal
goodnessvalueis 1; bettervectorsshouldresultin lower
stressbut highergoodness.Goodneshasthe propertythat
it is unafectedby linear transformationf the distances,
so scaling and shifting the target distanceshas no effect
on goodness.Becauseametric stress,non-metricstressand
goodnesslo notalwaysagreeonwhichis thebestsetof vec-
tors, all threemeasuresrereportedin the analysisfoundin
Section9. In Section9.3, the practicaldifferencesetween
thesemeasuress discussed.

goodness =

2.1. Example tasks

Two BMDS taskswereusedin testingthealgorithmspre-
sentechere.Thefirst, known asthe Exemplar task,wascom-
pletelyartificial. It consistedbf 4,000vectorsof dimension-
ality 1,000,generatedh thefollowing way. First,10random
bit vectorsof length 50 were produced. Eachof the 4,000
vectorswascreatedby taking oneof the 10 exemplarsflip-
ping eachbit with 10% chance,and then doing a random
projectionto real-valued1,000-dimensionaspace. The re-
sulting vectorsethasa basicallysimple similarity structure
with a good deal of randomnessuperimposed.Because,
prior to the randomprojection, the vectorsoccupieda 50-
dimensionabit spacethe vectorsshouldbe quitecompress-
ible.

Thesecondask,theWord task,involves5,000vectorsof
length4,000representingvord meanings.The vectorswere
generatedisinga methodsimilarto HAL (Lund & Burgess,
1996). Word co-occurrenceweregatherecbveralargecor
pus of Usenettext. Raw co-occurrenceountswere con-
vertedto a ratio of the conditionalprobability of oneword
occurringin the neighborhooaf anotherto theword'’s over-
all probability of occurrence Thefirst 4,000valuesof each
word’s vector, reflectingits co-occurrencesvith the 4,000
othermostfrequentwords,wastakenastheword’s meaning
vector This sethasa morecomplex similarity structurethan
the Exemplarset.

Note that these problemsare considerablylarger than
thoseto which MDS is typically applied, which generally
involve no morethana few hundreditems. ClouseandCot-
trell (1996) reportedan exampletaskinvolving 233 words.
Becauseary reasonableVDS algorithmwill likely have a
running time that is at leastO(N?), the tasksstudiedhere
areeffectively severalhundredimesmorecomplex. Of crit-
ical concernwill benotonly theability to achiese low stress

or high goodnessbut the runningtime of the variousalgo-
rithms.

3. SVD: THE SINGULAR-VALUE
DECOMPOSITION METHOD

ThesingularvaluedecompositiorfSVD) is thefoundation
for theLatentSemanticAnalysistechniquefor documentn-
dexing andretrieval (Deerwesteetal., 1990).1t hasalsore-
cently receved considerablattentionfor its usein efficient
clusteringmethods(Frieze,Kannan,& Vempala,1998). It
thereforeseemsnaturalto considerdesigninga BMDS al-
gorithm using the singularvalue decomposition. This first
method,which is basedon computingthe SVD of the item
vectormatrix, is someavhatrelatedto the metric MDS tech-
niqueof Torgerson(Torgerson,1952).

Any realmatrix, A, hasa uniquesingularvaluedecompo-
sition, which consistof threematrices|J 2V, whoseproduct
is the original matrix. Thefirst of theseU, is composedf
orthonormalcolumnsknown astheleft singular vectors and
thelast,V, is composedf orthonormalrows known asthe
right singular vectors. X is diagonalandcontainsthe singu-
lar values. Thesingularvectorsreflectprinciplecomponents
of A andeachpair hasa correspondingalue,the magnitude
of whichis relatedto thevarianceaccountedor by thevec-
tor. If Ais symmetricandpositive semi-definitetheleft and
right singularvectorswill be identicaland equialentto its
eigervectorsandthe singularvalueswill beits eigervalues.

Non-binary multidimensionalscaling can be performed
usingthe SVD asfollows. Let A bethe M x N matrix whose
columnsaretheoriginalitemvectors.The SVD is computed
andthe right singularvectorsare sortedby decreasingin-
gularvalue.Only thefirst D vectorsandvaluesareretained.
The new representationf item i is the vectorcomposedf
theith valuein eachof the D highestright singularvectors,
scaledby its correspondingingularvalue.

3.1. Discretization

In orderto performbinary MDS, the valuesmustbe con-
vertedto bits. Onecouldsimply usethefirst D right singular
vectorsandassigna singlebit to eachcomponent.But this
would not bevery effective becauseghe vectorswith highest
valuecontainmostof theusefulvariance Furthermorethere
are often fewer thanD non-zerosingularvalues. Thus,we
may needto assignmorethanonebit to eachright singular
vector Themethodfoundto be mosteffectiveis to assigrthe
bits roughlyin proportionto the magnitudesf the singular
values.A deterministiqprocedurds usedto accomplistthis.
Thefirst bit is assignedo thevectorwith thelargestsingular
value. Its valueis thenhalved. The secondbit is assigned
to the vectorwith the singularvaluethatis now the largest.
Oncetwo bits have beenassignedo a vector its valueis set
to 1/3 of its original value. For threebits, its valueis 1/4 of
theoriginal,andsoon.

Assume for example,thatwe hadthreesingularvectors
with valuesl2,9, and5 andwe wereto assigrb bits (D = 5).
Thefirst bit goesto the first vectorandits valueis reduced
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to 6. The secondbit goesto the secondvectorandits value
is reducedo 4.5. Thethird bit goesto thefirst vectoragain,
becauseét is onceagainthe largestvalue. Its valueis setto
4 (12/3). Bit 4 goesto thethird vector, becausét is now the
largest,andits valueis reducedo 2.5. Theremainingvalues
are4, 4.5,and2.5 andthelastbit goesto the secondvectot
In the end,thefirst two vectorshave beenassignedwo bits
andthelastvectorone.

The bits arethengivenvaluesusinga unaryencoding.If
a vectorhasthreebits assignedo it, the possiblecodesare
000,001,011,and111. This may not seemto be the most
efficientuseof thebits, but it is the only methodthathasthe
appropriatesimilarity structurebetweencodes. The codes
areassignedo itemsasfollows. Eachright singularvector
hasN componentgorrespondingo the N items. Theseare
sortedand partitionedevenly into the samenumberof bins
asthereareunarycodes.With threebits therewould be four
bins. The itemsin the first bin would receve the bits 000.
Thosein the secondbin would receve the bits 001, andso
on.

3.2. Running time

A majorproblemwith the SVD methodis thatcomputing
the SVD is quiteslow. Becauséhe matricesaredensecom-
putingthe SVD takes®(N2(N 4+ M)) time. If N is largerthan
M, the matrix A canbetranspose@ndtheleft singularvec-
torsusedgiving arunningtime of ©(M2(M + N)). However,
it is no fasterto run the SVD algorithmwith small D than
with large D. Using a 500MHz 21264 Alpha processarit
takes25 minutesto computethe SVD on the Exemplartask.
But on the Word problem,with N = 5000andM = 4000, it
runsfor nearlyaday.

3.3. Variants

If oneknawsthatacertainsubsebf itemsis representatie
of the othersit is possibleto speedup the SVD computation
by only using that subsetto generatethe singularvectors.
Althoughthis might enablethe SVD methodto tacklemuch
largerproblemsijt hindersperformanceAs we’ll seein Sec-
tion 9, the SVD methodof BMDS doesquite poorly to begin
with. Several alternative discretizationmethodshave been
tested put werenot foundto be aseffective.

4. MGD: THE METRIC GRADIENT
DESCENT METHOD

The secondhybrid methodusesgradientdescento opti-
mizetheitemvectorsin areal-\aluedspacebeforediscretiz-
ing them. It is similar to more traditional MDS in the use
of the stresscostfunction and gradientdescentbut differs
from themin thatit is metric. The stressmeasureuseslin-
earlytransformedargetdistancestatherthanmonotonically
transformedargets.

4.1. Initialization

Thefirst stepof thegradientdescenmethods to createan
initial setof N real-valuedvectorsof dimensionalityD. The
vectorscould be assignedandomly asis typically donein
standardVIDS. However, this tendsto resultin anunneces-
sarily long minimizationprocessA betterapproachs to use
afastmethodto createmoderatelygoodinitial vectors.One
nice way to producegood initial vectorsis with a random
projection.

First, D randombasis vectors of dimensionalityM are
generated. The elementsof the basisvectorsare draw in-
dependentlyrom a Gaussiaristribution. For eachitem, the
correlationbetweenits original vector having dimensional-
ity M, andeachof the D basisvectorsis computedandthese
D correlationform the componentsf theitem’sinitial vec-
tor in the smallerspace.

This randomprojectionis reasonablyfast,©(NMD), and
preseresmuchof theinformationin theoriginal vectors gs-
peciallyif D is large. Evenwithout the minimizationphase,
the randomprojectiongoesa long way toward solving the
BMDS problem. However, thereis still considerableoom
for improvementto justify the moreexpensve optimization
process.

4.2. The cost function and its derivative

The goal of the optimization phaseis to minimize the
stresshetweerthe actualvectordistancesandthe scaledar
getvectordistances:

Ticj(dij —btj)?
Zi<jdﬁ

i and j togetheriterateover all pairsof items, d;; is the
city-block distanceof i and j's vectorsin the new spacef;;
is thecorrelationdistanceof i and j’sinitial vectors,andb is
anadjustablescalingfactor

At the startof eachstepof the iteration, the value of b
is computedthat resultsin minimal stress. This methodis
commonlyknown asratio MDS, asit seekgo minimizethe
discrepang betweenactualandtarget distanceratios. The
optimalvalueof b is givenby:

b 2i<iditi
zi<j ti2j
Next, the derivative of the stresswith respectto eachof

the ND vectorcomponentss computed. This derivative is
givenby thefollowing formula:

a_S_ dij—btij_dij\/§ 0d;
di _Z VSTE  T/TF
Whenusingcity-block distancethe derivative of distance

dij w.r.t. componentiy is simply sgn(ix — ji), or 1if ix > jk
and-1 otherwise.

ik
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4.3. Component updates

Oncethe ND derivativeshave beenaccumulatedver all
item pairs, the vector componentsare updatedby taking a
small stepdown the direction of steepestescent.The size
of the stepis scaledby alearningrateparametera. Follow-
ing Kruskal (1964b),it is alsoscaledby ther.m.s. value of
all vectorcomponentsandthe inverseof ther.m.s. deriva-
tive. The reasonfor this scalingis thatit reduceshe need
to otherwiseadaptthe learningrateto the sizeof the overall
problem.Thecomponentpdateformulais asfollows:

qV Yibib 0S

3s 0i
Yib o, K

ik =ik—

In orderto preventthe vectorcomponent$rom shrinking
or growing to a point whereprecisionis lost, they are nor-
malizedfollowing eachupdateto maintainanr.m.s.valueof
approximatelyl.

At the end of the minimization, the real-valuedcompo-
nentsare corvertedto bits basedon their signs. Negative
componentdecomedsandpositive componentdecomels.

4.4. Learning rate adaptation and stopping crite-
rion

Despitethe learningrate scalingfactors,it is still neces-

saryto adaptthe learningrateasthe minimizationproceeds.

In general,a larger learningrate is usedinitially andthen
progressiely reducedasaminimumis approachedTheini-
tial value of the learningratewas 0.2, which hasprovento
beagoodchoicefor tasksof widely varyingsize.

The generalproblemof automaticallyadaptingthe learn-
ing rate during a gradientdescentto achieve the bestper
formanceis an interestinganddifficult one. The following
methodis basedon obsenations of what experiencedhu-
mansdo when adjustinga learningrate by hand. It is by
no meansoptimal, but it doesseemto work quite well for
ary gradientdescentthat hasa smooth,fairly stableerror
function,suchasthecurrentproblemor whentrainingneural
networksunderbatchpresentation.

The learningrate and terminationcriterion are basedon
two measuresknown asprogress andinstability. Progressis
thepercentthangean overall stressollowing the lastweight
updateandis definedas:

progress=P = S-17%
S

where § is the currentstressand S, is the previous
stress. A positive P value indicatesthat the stressis being
reduced,which is good. If P ever becomesegative, the
learningrateis immediatelyscaledby 0.75. This normally
resultsin areturnto positive progreson the next update.

Instability is a time-averagedmeasureof the consistenyg
of the progressandis definedasfollows:

instability = It = 0.5 (It_1_|_ MD
R-1

Steadyprogresgesultsin low instability. Wheneer the
learningrate changesjnstability is resetto 10. If progress
is high andtheinstability is low, thingsareproceedingwell
andno changesareneeded.If progresds unstablejt often
indicatesthat the learningrateis a bit too high. But it is
usuallynot worth loweringthe rateunlessnegative progress
is made. The only casewhereit is generallya goodideato
increasehelearningrateis whenprogresss slow andstable.
Thus,whenever the progresss lessthan0.02 (2%) andthe
instability is lessthan0.2, thelearningrateis scaledby 1.2.

The minimizationterminateswhenthe progressemains
belowv 0.001(0.1%)for 10 consecuite updates.On the ex-
ampletasksusedhere,the algorithmgenerallyterminatesn
between50 and 250 updatesdependingon the valuesof N
andD.

4.5. Running time

As with ary gradientdescentechnique,it is difficult to
predictin advancehow mary updateswill be required. In
general,the length of the settling processincreasesa bit
with larger N andD. The costfor eachupdateis @(N2D).
Therefore,the algorithmtendsto be somavhat worsethan
quadraticin N and somavhat worsethanlinearin D. The
runningtime is evaluatedempiricallyin Section9.4.

4.6. Variants

Oneof theadvantage®f gradientdescentmethodss that
they areextremelyflexible andpermitendlessvariation. In
addition to the stresscost function and the city-block dis-
tancefunction,summedandsum-squaredosthave alsobeen
tested aswell asEuclideandistance Noneof thesealterna-
tivesperformedaswell with metric gradientdescenbn the
currenttasksasdid stressandcity-block distance.

Furthermore various methodsof scalingthe target dis-
tanceshave alsobeentested.Ratherthanscalingthe targets
by an adaptve factor, b, they could simply be usedin their
raw form of correlationdistancescaledby D. Alternately
onecouldtransformthe distancedy a+ bt;j, wherea andb
arebothadjustedo minimizetheoverallcost. Thisis known
asaninterval scale.Using aninterval scale,althoughmore
flexible, proved slightly lesseffective on the currentprob-
lems. One could further loosenthe restrictionson the tar-
getdistancedy usingthe optimalmonotonidransformation,
asin KruskalandShepards non-metricMDS technique put
thatis the subjectof the next algorithm.

It maybepossibleto improvetherateof corvergencewith
a betterautomatedrocedurdor adjustingthe learningrate.
Another promisingadditionwould be the useof a momen-
tum term on the componenupdatestep,asis oftendonein
training neuralnetworks. Momentumaddsa fraction of the
previous stepin vectorspaceto the currentstep,which can
oftenspeedearning.

Finally, as one might expect, a major problemwith this
methodof BMDS is that significantinformation is lost in
thediscretizatiorstep.Althoughthe city-block distancede-
tweenpairs of vectorsmay matchthe target distancesvery
well, thosecity-block distancesvill notaccuratelyeflectthe
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Hammingdistancesof the correspondingdit vectorsunless
the real-valuedcomponentsare closeto -1 or 1.2 Thus, it
may be beneficialto introducean additionalcostterm that
penalizescomponentdor beingfar away from -1 or 1. A
simple polarizing costfunction is the absolutevalue of the
distancebetweenthe valueand-1 or 1, whicheveris closer
Thiswould adda constant-sizéermto thevalueon eachup-
date,having theeffectof pulling thevaluetowardsthe closer
of 1 and-1. Like thelearningrate,the sizeof thatstepis an
adjustableparameter

A someavhat more sophisticategolarizing costfunction
is (ig — 2i2+ 1)/4. Thisis shapedike a smoothW. It has
concae upward minima at 1 and-1 and a concae down-
ward maximumat 0. At valueslargerthan-1 or 1 it in-
creasegapidly, heaily penalizinglarge values. It is nice
becausedhereare no discontinuities which candisruptthe
gradientdescent. The derivative of this functionis simply
if —ik. Thus,ateachweightstep,i —ix, multiplied by the
costparameteris subtractedrom eachvalue.

Experimentatiorwith thesecostfunctionsindicatesthat
they are quite effective in speedinghe convergenceof the
gradientdescent.However, whenusing metric gradientde-
scentthey don't seemto do muchto improve the quality of
theresultingvectors.

5. OGD: THE ORDINAL GRADIENT
DESCENT METHOD

This next methodis basedmore closelyon Shepardand
Kruskal's gradientdescenttechniquefor MDS (Shepard,
1962;Kruskal,1964a).Ratherthanusinglinearly scaledtar
getvaluesin computingthe stressthe best-fitingmonotonic
transformatiorof thetamgetvaluesis used. Thusthe method
is non-metric,or ordinal, in thatthe actualtargetvaluesare
notimportant,only their rank ordering.Exceptwherenoted,
all aspect®f this methodareidenticalto thosefor MGD, in-
cludingtheinitialization step,the updatestep,andthelearn-
ing rateadjustment.

5.1. Non-metric stress

Ordinalgradientdescentisesasits costfunctionthenon-
metricstresameasure:

where&ij arethosevaluesthatminimizethe stressunder

the constraintthat the dij have the samerank order as the
corresponding . Thederivative of this functionw.r.t. com-
ponentiy is the sameasfor metric stressgxceptthatb t;j is
replacedby di;.

Theoptimald;; valuesarecomputedn eachiterationus-
ing the up-down algorithmof Kruskal (1964b). In termsof
runningtime, this processs linearin the numberof distance
values O(N?), andis thussignificantlylesscostlythancom-
putingthe componenteriatives.

5.2. Sigmoidal components

As mentionedbefore,a major problemwith the gradient
descentmethodis the distortion introducedin discretizing
therealvaluesinto bits. If the realvaluesareeitherexactly
-1 or 1, the city-block distancebetweernreal-valuedvectors
will exactly correspondo the Hammingdistanceof the bit
vectorsandtherewill benolossof information. However, if
therealvaluesaremuchlessthanor greateithanl in magni-
tude,thediscretizatiorwill introducenoise.Thisleadto the
ideaof addinga costfunctionthatencouragetherealvalues
to becloseto 1 or -1. However, suchcostfunctionswerenot
foundto beterribly helpful in practice.

An alternate is to transformthe vectorcomponentsis-
ing a sigmoid, or logistic, function, which limits valuesto
the range [0,1] and makes it easierfor the gradientde-
scentto achieve nearly-discretevalues(Rumelhart,Hinton,
& Williams, 1986). The sigmoidfunction hasthe following
formula:

S(ix) = 11 ek
Thisfunctionis shapedik e aflattenedS. If ix = 0, s(ix) =
0.5. As ix increasesabore 0, s(ix) approached. As ik
decreasedbelow 0, s(ix) approachesl. The parametergy
is known asgain andcontrolshow rapidly the sigmoid ap-
proachests limits. The advantageof the sigmoidis that it
is quite easyfor the gradientdescento drive the effective
vectorcoordinatess(ix), closeto 1 or 0 by driving theactual
coordinatedo large positive or negative magnitudes.
When using the sigmoid transformedcomponents the
vectordistancefunctionandits partial derivative become:

dij = Z|S(ik)—s(jk)|

Tk = g() (.- i) san(s(i) — (1)
5.3. Polarizing cost

The sigmoidis only helpful if a good proportionof the
vector componentsactually grow fairly large (andthus ap-
proachO or 1 when put throughthe sigmoid). In orderto
encouragehis, an extra polarizingtermis addedto the cost
function. In theabsencef the sigmoid,sucha costfunction
mustbe somevhat comple, asit shouldhave the effect of
pulling thevaluestowards-1 or 1, but notbeyondthem. Two
suchfunctionswerementionedn Section4.6. But whenthe
sigmoidis used,the cost function needonly pushthe raw
valuesaway from 0. Therefore the simplelinear costfunc-
tion is used. This hasthe effect of addinga small constant
to the positive valuesand subtractinga small constanfrom

2|f city-block distancesetweenvectorswith componentghat
areexpectedo fall closeto -1 or 1 areto be comparedo Hamming
distancef bit vectorsformedfrom the signsof the components,
the city-block distancesnustactuallybe scaledby 1/2.
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thenegative valueson eachweightupdate.In evaluatingthis
method,a constanbf 0.05wasused.

Becausehe sigmoid avoids the problemof overly-large
componentsand the polarizing term prevents an overall
shrinking of componentsthereis no needto re-normalize
thevaluesperiodically

5.4. Running time

Becausehey involve an exponential,computingthe sig-
moids exactly can substantiallyslow down this algorithm.
Therefore afastapproximatiorto the sigmoidfunctionwas
used.The sigmoidsof 1024valuesevenly distributedin the
range[-16,16] werecomputedn advanceandstoredin ata-
ble. In computingthe sigmoidof a new value,the sigmoids
of thetwo closestvaluesin thetablearelinearly interpolated.
This methodis quite fastandis accurateto within 2 x 10~/
of thecorrectvalue.

Despitebeing somavhat more complex than MGD, the
asymptotiqunningtime of this methodremains®(N?D) per
update. Becausdt tendsto corverge fasterthanthe metric
method however, theoverall runningtime is someavhatless.

5.5. Variants

The gain term in the sigmoid function determineshow
sharpthe sigmoidis andthushow polarizedthe valuesare.
A higher gain draws the resulting valuescloserto 0 or 1,
andthusreduceghe noiseintroducedin the discretization.
However, a high gain canalsoimpedelearningin the min-
imization phase. Thus, one might think of startingwith a
small gain and graduallyincreasingit as the minimization
progressesHowever, attemptsto do this resultedin no im-
provementover usinga fixed gainof 1.0. Using otherfixed
gainvaluesalsoseemedo male little difference.

6. GBF: THE GREEDY BIT-FLIP
METHOD

This next methodis quite similar to that of Clouseand
Cottrell (1996),but thealgorithmhasbheenalteredto achiese
anasymptoticallyfasterrunningtime. Lik e the gradientde-
scenttechniquesthis methodperformsa gradualminimiza-
tion. However, ratherthatworking in a real-valuedspaceijt
operatedlirectly in bit space.

The optimizationproceedsy flipping individual bits, in
anattemptto minimizethelinearcostfunction:

COQ:_Z|dij—tij|

i<j

whered;j is theHammingdistancebetweerthebit vectors
for itemsi and j andtjj is the correlationdistancebetween
their original vectors,scaledby D, the numberof bits per
vector The advantageof the linear costfunctionis thatthe
contribution of individualbitsin avectorto thecostareoften
independenof oneanotheywhich allowsthealgorithmto be
muchmoreefficient. In thenext method GBFS,we consider
the effect of usingsquaredatherthanabsolutecost.

6.1. Initialization

Theinitial bit vectorsareformedusinga randomprojec-
tion, asin the gradientdescentmethods. However, rather
than using the actualcorrelationswith the basisvectorsas
the component®f the initial vectors,thesecorrelationsare
convertedto bits basedon their sign. Negative correlations
becomedsandpositive correlationdbecomels. This method
hasthe propertythat 1sandOs areexpectedequallyoften.

6.2. Minimization

The minimization phaseis conceptuallyvery simple. It
operatedy repeatedlyflipping individual bits in the N x D
matrix of bit vectors,provided that thoseflips lead to im-
mediateimprovementsin the overall cost function defined
above. The bit thatis flippedis alwaysthe onethatleadsto
the greatestmmediateimprovementin the cost, hencethe
namegreedy.

The ClouseandCottrell (1996)algorithmdifferedin that
it selectedits atrandomandthentestedo seeif flipping the
selectedit would decreaséhecost. Thisis fairly inefficient
neartheendof theminimizationprocessvheretherearevery
few bits worth flipping.

Thekey to performingthe minimizationquickly is to keep
track, at all times, of the changein overall costthat would
resultfrom flipping eachbit. This is referredto asthe bit's
gain. A positive gain meansthe overall costwould be re-
ducedby changingthe bit. All bits with positive gainsare
storedin animplicit heap (Williams, 1964). This standard
priority queuedatastructureallows the bit with the highest
gainto beaccesseth constantime.

Wheneer the gain of a bit is changedbecauset or an-
other bit is flipped), the heap must be adjusted. In the-
ory this adjustmentakes O(log(ND)) time. However, the
O(log(ND)) boundis very loose. Becausehe gainchanges
tendto besmall,heapupdatesarelyinvolve morethanafew
stepsthroughthe heap.Furthermorebecaus@nly bits with
positive gainsaremaintainedn the heapandthe vastmajor
ity of bits have negative gains,especiallytoward the end of
theprocessthereareusuallyfar fewerthanND bits actually
in the heap. Therefore the gain updatestepis, in practice,
quite closeto a constant-timeperation.

Along with thegainheap we alsomaintainthetargetdis-
tance jj, andthe currentdistancedj, for eachpair of vec-
tors. If the actualdistanceis at least1 lessthanthe target
distancewe would lik e to make the two vectorsmorediffer-
ent. Therefore for ary dimensionk, if bitsiy and jx arethe
same,the overall costwould be reducedby 1 if we flipped
eitherof thosebits. If iy and jy aredifferent,the costwould
increasdby 1 if we flippedeitherof thosebits.

Likewise,if theactualdistancds atleastl largerthanthe
target distance the contribution of thesetwo vectorsto the
overallcostwill bereducedy 1if weflip any bit thatmakes
them moresimilar andincreaseby 1 if we flip ary bit that
makes them more different. If flipping a bit causedd;; to
changefrom largerthant;; to smallerthant;j, the changen
costwill bel—2(d;j —tj;). Likewise,if djj growslargerthan
tjj with abit flip, thechangein costis 1 — 2(tj; — dij).
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Of course,the gain for flipping a particularbit for item
i is not dependenbn just one otheritem, j. It is summed
over all otheritems. Whenary bit is flipped, the gainsfor
someotherbits mustbe adjusted.Onefactorthatimproves
theefficiengy of the GBF algorithmis thatwe do not needto
updatethe gainfor every otherbit. As longaswe areusing
the linear costmodel, the gain for most other bits remains
unchanged.

If the bit iy hasjust beenflipped, we will definitely need
to updatethe gainfor the otherbitsin vectori. We will also
needto updatebit k for all of theothervectors.However, we
don't necessarilyneedto updatethe otherbits for the other
vectors.We only needto do soif |tj; — dij| < 1, eitherbefore
or aftertheflip.

6.3. Running time

Eachof the bit updatestakes constanttime (assuminga
constantheapupdate).Sothe costof flipping a bit is some-
where between®(N + D) and ©(ND), dependingon how
mary otherbits mustbe updated.In practice,all the bits of
a vectorareusuallyupdatedroughly 1/3 of thetime. How-
ever, mostof thesecasesoccurtoward the end of the mini-
mizationasthe actualdistancegrow closeto thetargetdis-
tances. Therefore,the bulk of the minimization occursin
a relatively shorttime and, if time were a factor the mini-
mizationcouldbe stoppedvell beforeit is completewithout
significantdegradationin theresultingvectors.

Unfortunately as with the gradientdescentmethods,it
isn't possibleto predictexactly how long the minimization
proceswwill take. In theory, therecould be an exponentially
large numberof flips beforethe algorithmterminates.One
could, of course,terminateearly oncea minimum gain, a
minimumnumberof bitsin thegainheap,or atimelimit has
beenreached.Or onecould testthe bit vectorsperiodically
and stop when significantfurther progressseemsunlikely.
However, in practicethe algorithmtendsto terminateon its
own in aconsistenhumberof flips, varyingby atmostafew
percentbetweertrials.

6.4. Variants

Oneconcernin performinggreedyminimization, always
flipping the bit that providesthe greatesimmediategain, is
thatthe algorithmmay be morelikely to fall into badlocal
minima. A betteroption may be to selectrandombits from
the gainheapasdid ClouseandCottrell (1996), effectively.
In practice performingrandomoptimizationcanleadto very
slightly bettersolutionsthan greedyoptimizationon most,
but not all, tasks.However, it tendsto requireabouttwice as
mary flips because¢hey are,on averageJesseffective.

Another possibility is to startwith a completelyrandom
initial configuration,ratherthan one producedby the ran-
dom projectiontechnique. Again, an optimization starting
from arandominitial configurationtendsto take abouttwice
aslong. WhenD is large, thereis little or no differencein
performancelnterestingly whenD is small, startingfrom a

randominitial configurationleadsto significantly betterre-
sults on the Exemplartask but much worseresultson the
Word task.

An additionalthoughtis that, ratherthanflipping bits one
at a time, several bits could be flipped at once. This would
make the algorithmmorelik e a discreteversionof the gra-
dientdescenimethods,in which all vectorcomponentsare
updatedsimultaneouslyPerhapdlipping severalbitsatonce
would addnoisethatcouldhelp propeltheminimizationpast
local minima.

Several variantsof this ideawere tested. In the first, a
randomsubsebf bitsin the gainheapwereflipped simulta-
neously Eachbit in the heapwaschosenwith a probability
thatrangedfrom 5% to 25% acrosstrials. Oncetherewere
lessthanaboutl10 bits in theheap it wasnecessaryo revert
to thesingle-bitmethodor the minimizationwould neverter-
minate.A secondvariantflippedthen bits with highestgain,
wheren wasa specifiedfraction of the total numberof bits
with positive gain. Unfortunately thesemethodsproduced
very similar resultsto the single-bitmethod but weresome-
whatslower.

7. GBFS: THE GREEDY BIT-FLIP WITH
SQUARED COST METHOD

GNFS is identical to GBF, except that a squaredcost
function is used, as recommendedy Clouseand Cottrell
(1996). This providesa greatermenaltyfor vectorpairsthat
arevery far from their targetdistancesThe disadwantageof
the squarectostfunctionis thatwe cannotassumendepen-
dencewvhenupdatingbit gains.Thus,whenabit is flippedwe
mustupdatethe gainsfor all ND bits, slowing the algorithm
considerably

If onewishesto run the algorithmuntil a local minimum
is reachedthis methodwill bemoreefficientthanthe Clouse
andCottrell (1996)techniquebecauséhelatter suffersfrom
inefficiency whenfew badbits remain. However, if the al-
gorithm s to be terminatedwell shortof corvergence,the
ClouseandCottrell (1996) methodwill mostlikely befaster
becausdt avoidsthe overheadf maintainingthegainheap.

8. GMC: THE GREEDY MAX CUT
METHOD

Thefinal algorithm,known asthe greedymaxcut (GMC)
method,also operategrimarily in bit-space. It startswith
anempty N x D matrix of bit vectorsand iteratesthrough
the columnsof bits, choosingthe value of the first bit for
eachvector, thenthe secondbit for eachvector andsoon.
Onceall of the bits have beenchosenit iteratesthroughthe
columnsof the matrix againseveraltimes,adjustingthe bits
wherenecessary

Aside from the differencein initialization, this algorithm
can be distinguishedrom GBF and GBFS, andthe earlier
methodof (Clouse& Cottrell, 1996), primarily in how it
identifies bits that needto be flipped. Ratherthan select-
ing bits greedilyor at random,the GMC algorithmsystem-
atically testseachbit in the matrix. This requiressimpler
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recordkeepingthanGBF, aswe no longerneedto maintain
the gain of eachbit. Like the Clouseand Cottrell method,
GMC only maintainghe currentHammingdistancesndtar
getdistancedetweerall pairsof vectors.

Asin GBFS thecostfunctionminimizedin thisalgorithm
is the sum-squaredlifferencebetweenthe actualHamming
distancesd;j, andthe correlationdistancesof the original
vectorsscaledoy D:

cost=C= .z(dij —tij)z

1<)

8.1. Filling the columns

At all times, the algorithm maintainsthe current set of
Hammingdistancedbetweenvectorpairs. It beginswith vec-
tors of all Os. It thencyclesthroughthe D columnsin the
bit-vectormatrix, filling eachcolumnso asto minimize the
overall cost.

This is calledthe “greedy max cut” methodbecausehe
proces®f filling thecolumnschoosegachbit soasto greed-
ily reducethe overall costandis relatedto the well-known
Maximum Cut graphpartitioningproblem.Considera com-
plete,undirectedgraphwith N verticescorrespondindo the
N items,with theweightof edgeij equalto 1 — 2(tjj — dij).
The problem of finding the assignmenbf bits to column
k that minimizesthe squaredcostis equivalentto finding
the partitioning of the graphthat maximizesthe weight on
edgescrossingthe partition. The itemson the sameside of
the partition receive the samevalue for bit k. This is the
Maximum Cut problem,which is known to be NP-complete
(Karp,1972)3

Thereforejt seemdikely thatno algorithmexiststo pro-
duceanoptimalsolutionto the problemin polynomialtime.
However, several fastapproximationalgorithmsare known
that will producesolutionsto the Maximum Cut problem
guaranteedo be within a certainpercentagef the optimal
value. The earliestsuchapproximationalgorithmis that of
SahniandGonzaleq1976),which guaranteedhatthe solu-
tion found would be at leasthalf of the optimal value. The
methodemployedhere,in its first passjs quite similarto the
SahniandGonzalesalgorithm.

Whenfilling columnk, the first item recevesa random
bit. Eachsubsequentem is giventhe bit valuethatresults
in a lower overall cost,computedover the precedingtems.
The contribution to the overall costof item i which results
from selectingthe valueiy = 0 will be:

Ch= > (dj—tj)°+

j<i,Jk=0

(chj +1~1;j)

j<hJk=1

where | iteratesover all itemsfor which bit k hasbeen
chosen. The first summationincludesonly thoseitems for
which bit jx is 0 andthe secondsummationincludesonly
thoseitemsfor whichbit ji is 1. Thus,if ix = 0, thedistance
to itemsfor which jx = 1 will increaseby one.

Similarly, the costfor choosing = 1 will be:

Cl = (dij+1—t;j)°+ (dij —tij)°
j<i\Jk=0 i<ijk=1

If Ci?( < Cilk, ik is setto 0, otherwiseto 1. In practice,it
would be inefficient to computethoseentire expressions.It
is betterjustto computetheir differencewhichis givenby:

Ch—Ci = 5 (2ik—1)(2(chj —tij) + 1)

i<i

8.2. Adjusting the columns

However, this single-pass&ssignmenbof the bitsin a col-
umn canonly achiese aroughapproximatiorto the optimal
partitioning.It canbefurtherrefinedby iteratingthroughthe
itemsandflipping their bitswhendoingsoresultsin lowered
cost. In this adjustmentphase,the bits are not clearedin
adwanceand the cost function for item i is computedover
all otheritems,notjustthe precedingtems. Thus,thevalue
of eachbit in the columnis reconsideredjiven the values
of the otherbits. Subsequeradjustmentsvill furtherrefine
theassignmenthut the numberof bits thatarechangecdeach
time graduallydecreasedt is usefulto performatleasttwo
of theseprimary adjustments to eachcolumn beforefilling
thenext column.

Onceall of the columnsarefilled, it is helpful to cycle
throughthemseveralmoretimes,re-adjustinghebitsin each
onewhenthe costimproves. Theseareknown assecondary
adjustments. To clarify, the primary adjustmentoccur to
eachcolumnbeforethe next columnis filled. Thesecondary
adjustment®ccuronceall of the columnshave beenfilled.
In evaluatingthis algorithm, 2 primary adjustmentsand 8
secondanadjustmentsvereused.

8.3. Running time

Unlike the gradientdescentor bit flipping methods,the
running time of this algorithmis easily predicted. Filling
or adjustingeachcolumnrequires®(N?) operations.If the
total numberof primary andsecondaradjustmentss a, the
runningtime of the algorithmis ©(N?D(a+ 1)).

8.4. Variants

The ohwvious parametersaffecting this method are the
numberof primary and secondaryadjustments. The first
few adjustmentgesultin significantimprovement,but fur-
ther adjustmentdiave greatly diminishingreturns. Thereis
atradeof in balancinghe numberof primaryandsecondary
adjustmentsOnecouldrely on all-primary or all-secondary
adjustmentsput performances betterwith someof each.
Holding thetotal numberof adjustmentdixed,it is generally
bestto use2 or 3 primary adjustmentanda greatemumber
of secondarynes.

3 Technically our bit assignmenproblemdoesnot exactly re-
duceto MaximumCutbecauséhelatternormallyonly permitspos-
itive edgeweights wherea®urgraphhashothpositive andnegative
weights. Althoughthis form of reductiondoesnt prove thatthe bit
assignmenproblemis NP-hard,it is suggestie of the difficulty of
theproblem.
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As describedthe GMC algorithmis completelydetermin-
istic. Multiple runson the samesetof itemswill resultin ef-
fectively the samevectors althoughsomecolumnswill have
all of their bits reversedbecausehe first bit in eachcolumn
was selectedandomly It seemsplausiblethat this method
could tendto hit local minima becausehe bits are always
updatedn the sameorderin the adjustmenphases.A rea-
sonablevariantwould be to adjustthe columnsin randomly
permutedrder However, experimentswith thisontheWord
taskfoundequivalentor slightly worseperformancehanthe
simpler, deterministicmethod.

Another possibility is to alter the order of traversalin
the secondanadjustmenphase.Ratherthantraversingthe
columns,one might traversethe rows. This hasthe effect
of adjustinga single point relative to all of the otherpoints
before moving the next point. In contrast,column traver
saladjustsall pointsalonga singledimensiorbeforeconsid-
ering the next dimension. One might expectthesetwo ad-
justmentmethodso produceadifferentresults butin practice
they seemto resultin virtually identicalperformance.

An alternatve is to selectbits for possibleadjustment
at random,asin the Clouseand Cottrell (1996) algorithm.
Again, one might expectthis to betteravoid local minima.
However, equatingor thenumberof bitstestedrandomflip-
ping hasprovedto be slightly, but not much,worsethanei-
ther of the systematicupdatingmethods. Thus, in its sec-
ondaryphase GMC doesnt differ significantlyfrom theear
lier method. The mostimportantdifferencebetweenrthe al-
gorithmsis the methodof initializing the bit matrix. Replac-
ing theprimarybit-assignmenphaseof GMC with arandom
assignmenof bits, but still equatingfor the total numberof
bits tested,resultsin significantly worse performance.Re-
placingit with arandomprojection,asin GBF, alsodegrades
performancebut lesssothanrandominitialization.

This algorithmcanbe easilyadaptedo ary costfunction
that hasthe form of a sum over independentontributions
from eachitem pair. It could efficiently handlethe stress
measurdf the numeratoranddenominatomwere storedand
updatedncrementally It wouldbemoredifficult to adapthe
algorithmto a non-metriccostfunction. Onewould needa
fast,incrementalersionof the up-dowvn algorithmto main-
tain the optimal monotonictransformatiorof the vectordis-
tancesas bits are flipped. When amortizedover multiple
flips, this may still be more than a constantiime operation
andwould thusaddto the asymptoticcompleity.

Finally, asin the GBF and GBFS methodsi,it is easyto
add a term to the costfunction that severely penalizesdu-
plicatevectorsandthusensureghat eachitem hasa unique
representationyhichis sometimesiecessary

9. PERFORMANCE ANALYSIS

In this section,we presentcomparison®f the six imple-
mentedalgorithms: SVD, MGD, OGD, GBF, GBFS, and
GMC. Themethodswvereappliedto the ExemplarandWord
taskswith varying bit-vectordimensionalitiesD, andwere
evaluatedusingthreemeasuresf theagreemenietweerthe
original pairwisedistance@ndthefinal bit-vectorHamming
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Figure 1. Goodnes®nthe Exemplartask.

distances: goodnessmetric stress,and non-metricstress.
Theaveragerunningtimesof the algorithmswerealsomea-
suredandarereportedn Section9.4.

Three trials of eachcondition were run on a 500MHz
21264 Alpha processorlndthe resultsaveraged. The only
exceptionswerethefew trials of SVD andGBFSthatlasted
morethan 10 hours,which wereonly run once. In general,
theresultsof the methodswereall very consistenacrosdri-
als. The SVD and GMC algorithmsare deterministic,and
thus achieve the sameresultsevery time. The otheralgo-
rithmsachiese goodnes®r stresgatingsthatvary about1%
betweertrials for small valuesof D andlessthan0.2% for
D >=100. Becauseof the small variance limited number
of trials, andgeneralclutter of the figures,errorbarsarenot
shawn.

9.1. The exemplar task

The averagegoodnessatingsof the six algorithmson the
Exemplartask, as a function of D, are shavn in Figure 1.
With the exceptionof SVD, the goodnessncreasesnono-
tonically with the size of the vectors. SVD is clearly the
worstof themethodsInterestinglyin thatcasethegoodness
actually decreasesvith D valuesover 20. This is presum-
ably becausewith largerD, the SVD methodbeginsto rely
on lessimportantsingularvectorswhich corvey little useful
information.

Thereis no clearwinner betweenOGD andMGD. OGD
may be betterfor lower D but worsefor higherD. Thethree
bestalgorithms accordingto goodnessarethebit-spaceop-
timizing methods:GBF, GBFS,andGMC. GBF doesnotdo
aswell for small D. With the exceptionof D = 10, GMC
achievesthe bestgoodnessn every case,althoughthe dif-
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Figure 2. Metric stressonthe Exemplartask.

ferenceswith GBF and GBFSareinconsequentialor large
D.

Themetricandnon-metricstresonthe Exemplartaskare
shawvn in Figures2 and3, respectiely. SVD doesso poorly
accordingto metric stresg(from 18.6for D = 10to 0.34for
D = 200)thatit doesnt appeanonthegraph.SVD alsodoes
quite poorly accordingto non-metricstress,althoughit is
at leastcomparableo the other methods. Interestingly al-
thoughit did not accordingto goodnessthe performanceof
SVD monotonicallyimproveswith D accordingto the stress
measures.

MGD is mediocreaccordingo bothmeasuresOGD does
rather poorly accordingto metric stress. This should not
be too surprisingsince OGD is only optimizing non-metric
stressandits resultingpairwisedistancesareunlikely to di-
rectly matchthe targetdistancesHowever, OGD is still not
asgoodasthe bit-spacemethodsaven on non-metricstress.
GBFSandGMC arefairly indistinguishableccordingo ei-
thermeasurealthough,with the exceptionof D = 10, GMC
is slightly betterin all casesGBF is worsethanthe othertwo
for D = 10, but is nearlyasgoodat higherdimensionality

9.2. The word task

TheWord taskhasa muchmorecomplex similarity struc-
turethantheartificial Exemplartask,andthusmayprovide a
bettermeasuref the ability of theBMDS methodson other
scalingproblemdnvolving naturaldata.Becausét has5,000
itemsandthe original vectorshave 4,000dimensiongather
1,000,the Word taskis computationallyharderaswell. The
goodnessneasurds shovn in Figure4 andthe stressmea-
suresaredepictedin Figures5 and6.
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Figure3. Non-metricstressonthe Exemplartask.
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Figure4. Goodnes®ntheWordtask.

Onceagain,SVD doesquite poorly. It makeslittle im-
provementin goodneswvith higherdimensionality It is off
of the metric stressscale,exceptfor the caseof D = 200,
andits non-metricstresss muchworsethanthatof theother
measuresAgain, however, it doesmake steadyimprovement
with higherD accordingto the stressmeasuresbut not ac-
cordingto goodness.

OGD is the clear winner on the goodnessscale, espe-
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Figure5. Metric stressontheWord task.
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Figure 6. Non-metricstresson the Word task.

cially for smallD. Thisis surprisingsinceit performedquite

poorly on the Exemplartask. Accordingto metric stress,
OGD againdoesnt do very well, but it is the bestmeasure
by non-metricstressfor D <= 50. Neverthelesspasedon

non-metricstress,it is not clearly dominantover the other
measuressit is on the goodnessscale. The next section
addressethis apparentdisparity betweengoodnesandthe

stresameasures.

As measuredy goodnessMGD doesquite well but is
not closeto the performanceof OGD. Accordingto stress,
MGD is just average. GMC and GBFS have quite similar
performancebut GMC is consistenthalittle bit betteronall
threemeasureatall valuesof D. GBFis reasonablyoodat
high valuesof D, but its performanceon all measuresirops
off with smallD.

9.3. Stress vs. goodness

It is interestingthatthe stressandgoodnessneasureslio
not alwaysagree.At times,onemethodwill performbetter
thananotheraccordingto goodnessut worseaccordingto
stress. For example, on the Word task with 50 bits, OGD
achievesan averagegoodnes®f 0.843while the GMC vec-
torsonly have agoodnes®f 0.741.However, the GMC vec-
tors have a metric stressof 0.109, which is betterthanthe
0.1330f the OGD vectors. Accordingto non-metricstress,
GMC andOGD arevery similar (0.104vs. 0.102). Because
themeasuredlon't alwaysagreejt is importantto choosean
evaluationmeasurehatis appropriatefor a giventask. So
let’s briefly comparahe propertienf thesemeasures.

We begin by trying to understandwhat aspectsof the
GMC and OGD solutionsmight have leadto the disagree-
mentamongevaluationmeasuresOne commonway to vi-
sually evaluateMDS resultsis throughthe useof a Shepard
diagram. Thisis a scattemlot with onepoint for every pair
of items. Thehorizontalaxisrepresentthedistancebetween
the original pair of vectors,or subjects’similarity ratingsif
thatis the startingpoint. The verticalaxisrepresentshe ac-
tual distancebetweerthe vectorsin thereducedspace.lde-
ally, the pointsshouldfall ontheidentityline.

However, becausdhe Word taskinvolves5,000items, a
standardshepardlot would contain12.5million points. So
mary pointsarehardto handleand estimatingtheir density
is difficult. Thereforeamodifiedversionof aSheparglotis
usedherewhichis somethindikea 2D histogram.Thegraph
is partitionedinto a grid of cells andthe numberof points
falling into eachcell is counted. Thenthe columnsof cells
arenormalizedso that the valuesin eachcolumnsumto 1.
Eachcellis thenplottedasacirclewhoseareais proportional
to the normalizedcell value. The ideal graphwill belinear
andhave little vertical spread.These"Shepard-histograms”
for onerun of the GMC and OGD algorithmsare shovn in
Figures7 and8.

It should be noted that this method of normalizing
columnsof cells disguiseghe fact that the vastmajority of
pairs have target distancescloseto 25, indicatingthat their
original vectorswere uncorrelated. Therefore,mostof the
datapointsn thegraphactuallyfall in thismiddlerange.This
canbeseenby performingthe normalizationacrossall cells,
not just alongtheindividual columns.Figure9 displaysthe
samedataasFigure8, but with normalizatioracrossll cells.
The cells representingzery small or large correlationdis-
tancesarebarelyvisible becaus¢hey containsofew points.

Figure7 shavsthatthe GMC algorithmfindsafairly lin-
earsolution. However, the solutionappeargo have a nega-
tive zero-crossingandis someavhat warpedfor small target
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Figure 7. Distribution of pairwisebit vectorHammingdistances
versusoriginal distancegor arun of the GMC methodon the Word
taskwith 50 bits. Cellsarenormalizedby columns.
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Figure 8. Distribution of pairwisebit vectorHammingdistances
versusoriginal distancegor arun of the OGD methodon the Word
taskwith 50 bits. Cellsarenormalizedoy columns.
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Figure9. Thesamedataasin Figure8 normalizedacrossall cells,
ratherthanby columns.

distances. Thus, vectorsthat were originally quite similar
tendto be evenmoresimilar in the bit-space.Thereis also
greatenvarianceor thecolumnsontheleft, althoughthis par
tially resultsfrom thefactthatthey containvery few points.

The plot of the OGD solutionin Figure 8 is noticeably
lesslinear, having amorepronouncedigmoidalshape Like
the GMC solution, small distancegend to be too-smallin
the final space. However, in this case,large distancegend
to beexaggeratediswell. This partially explainswhy OGD
doesbetteraccordingto goodnessor correlation,worseac-
cordingto metricstressandalmostequivalentlyaccordingo
non-metricstress.

Non-metricstresss essentiallyindicative of the variance
of the columnsin the Sheparddiagram,but is insensitve to
themeanvaluein eachcolumn.In thiscasethetwo methods
have fairly similar variance resultingin similar non-metric
stress Metric stresspn the otherhand,measureshedispar
ity betweerthe pointsandtheidentity function. Any devia-
tionfromthisline, whetheffor largeor smalltargetdistances,
contributesequallyto the stress.Metric stresss sensitve to
bothnoiseandmonotonicdistortions thelatterhaving arel-
atively strongeffect. Thus,the OGD solutionhasa higher
metricstress.

Thecorrelationmeasurés a bit harderto characterizen-
alytically. But somesimple empiricaltestsinvolving a few
artificial datasetshawv that correlationis actuallyfairly in-
sensitve to monotonicdistortions. First, a set of random
numbersvenly distributedbetweerD and1 weregenerated.
A secondsetof numbersvasproducedy transformingeach
valuein thefirst setandthecorrelationandstressof thenum-
berpairswasmeasured.
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Monotonicdistortionshave a greatereffect on stress. If
thesecondsetis composeaf thesquaraootsof thefirst set,
thereis little effect onthe correlation,whichis 0.98,but the
stressrisesto 0.098. If cuberootsare used,the correlation
is still fairly high, 0.959,but the stresds 0.229.Finally, if a
sigmoidcenteredairound0.5with againof 2 is appliedto the
numberdo createanS-shapedransformatiorasin Figure8,
the stressis moderate.067,but the correlationis virtually
unchangect0.9998.

In contrast,addingnoiseto the valueshasa larger effect
on correlationthan on stress. If 0.15is eitheraddedto or
subtractedrom eachvaluewith equalchance the correla-
tion dropsto 0.887but thestresss again0.067.Thus,in this
caseof noise,the stresds equalto or lower thanit waswith
the monotonictransformationshut the correlationis much
worse.Theimplicationof thisis thatthecorrelationmeasure
is fairly ordinalin its behavior. Indeed,measuringhe corre-
lation onthe exampletasksusingmonotonicallytransformed
targets dij, ratherthantheactualtargets tij, generallyresults
in only aslightimprovement.

9.4. Running time

Finally, we turn to the issueof the runningtime of the
variousalgorithms.Regardlesf how goodthe resultsmay
be, an algorithmis only usefulif it cansolve a given task
in an acceptablgime frame. The running times of SVD
and GMC are fairly easyto analyzebecausdhey're deter
ministic. The methodusedhereto computethe SVD is
O(N?(N + M) + ND). TheND termis for assigninghe bits
andis inconsequentiallf M < N, the matrix is inverted,re-
sultingin a®(M?(M + N)) algorithm.

The other algorithmsrequirethat all pairwise distances
betweerthe vectorsare computedwhich is a ©(N?M) pro-
cess However, becaus¢hatstepis commonto all of them.,it
wasdonein advanceandthe distancestored.lt is therefore
notshown in the measuredunningtimes. It is worth noting
that, althoughthey areboth ©(N?M), computingthe vector
distanceds much quicker than computingthe SVD dueto
themuchimprovedconstant.

Following the distancecomputationthe GMC algorithm
is ©(N?D), assumingthe numberof adjustmentss treated
as a constant. The gradientdescentand bit-flipping algo-
rithms, on the otherhand,aredifficult to analyzebecauset
isn't clearwhenthey will terminate. They are suspectedo
beroughly®(N?D), however, andwe turnto someempirical
measureso verify this.

Figures10 and 11 shaw the scaledrunning times of the
methodsasafunctionof D onthe ExemplarandWord tasks.
Becausdhe timeswere expectedto beroughlylinearin D,
they wereall dividedby D in producingthegraph.Therefore,
aflatline indicatesatruly linearalgorithm.SVD, becausds
runningtimeis essentiallyconstanthasdecreasingurvesin
both graphs. SVD wasso slow on the Word task, however,
thatit only appear®nthegraphfor D = 200.

MGD and OGD seemto be fairly linearin D. Both of
themareabit slower for very smallD on the Exemplartask.
Possiblythisis becausehey haddifficulty settlingonagood
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Figure 10. Runningtime asa functionof D onthe Exemplartask
(scalecby 1/D).

solutionwith sofew bits. OGD wassignificantlyquicker on
the Word task, but slower on the Exemplartask. The GBF
methodappeardo be somavhatworsethanlinear, its curves
noticeablyrising ontheright side. GBFS,on the otherhand,
is essentiallyguadratidn D.

The algorithmthat is consistentlyfastest,otherthanthe
ineffective SVD methodjs GMC. OntheWordtaskwith 200
bits pervector GMC is almostthreeanda half timesfaster
thanthenext fastesmethod,GBF. AlthoughGMC is known
to betruly linearin D, its scaledrunningtimesactuallyde-
creasewith largerD. This reflectsthe factthat lower-order
terms,suchasthe N2 costof loadingthe pairwisedistances,
have arelatively diminishingeffecton the overalltime. This
indicatesthat the other methodsthat appearedo be linear
dueto flat linesmayactuallybe slightly worse.

Figure 12 depictsthe running times of the methodsfor
varying numbersof items, N, on the Word task. In this
case,the running times have beendivided by N°>. GMC is
known to be quadraticin N. Therefore,the slight rise in
its line is eitherdueto lower-ordertermsor cachingineffi-
cienciesresultingfrom the increasednemoryrequirements
of the larger problems. GBF hasa similar profile and is
thusnearlyquadraticn N aswell. GBFSandMGD, on the
otherhand,areclearlyworsethanN?. OGD may be slightly
worsethanquadraticput it’ snotclear SVD rangedrom 4.3
timesslower thanMGD for N = 500to 9.5timesslower for
N = 5000.
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Figure 11. Runningtime as a function of D on the Word task
(scaledby 1/D).

10. DISCUSSION

Although multidimensionakcalingtechniquesave been
studiedfor overhalf acentury binarymultidimensionakcal-
ing, which wasinspiredby the needto develop representa-
tionsusablein training neuralnetworks, is a relatively new,
yetintriguing, problem. This studyhasintroducedandeval-
uatedseveral algorithmsfor performingbinary multidimen-
sionalscaling.lt is hopedthatthe bettermethodswill prove
usefulto researcherm their currentformsandthattheinclu-
sion of the lesseffective methodsin this reportwill helpto
directfuture attemptgo improve onthesetechniques.

10.1. SVD

Althoughit is sousefulin othertypesof scalingproblems,
the SVD methodis simply not a good choicefor BMDS. It
consistentlyachiered the worst performance For the Word
task,this cameatthe greatestost,in termsof runningtime.
Although it is possiblethat improved discretizationmeth-
odscouldachiese betterBMDS performanceisingthe SVD,
thereis still the issueof the running time. Unlesseither
the numberor dimensionalityof the original vectorsis quite
small,simply computingthe SVD is prohibitively expensve.

10.2. MGD and OGD

Thegradientdescenmethodswhich arethe mostclosely
relatedto techniquegurrentlyin usein standardViDS, shov
somepromisefor BMDS. They have theadwantagehatthey
canbeusedwith ary differentiablecostfunction,andarethus
extremelyflexible. Althoughthey wereslowerthanGBF and
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Figure 12. Runningtime as a function of N on the Word task
(scaledby 1/N?).

GMC onthesetasks mostof theimprovemenin theirresults
occursearly in the gradientdescentandthe processcanbe
cutshortwith relatively little effecton performance.

On the Exemplartask,OGD andMGD werenotasgood
asthebit-spacemethodsy ary measureHowever, they per
formedvery well accordingto the goodnessneasureon the
Word task,especiallyOGD. OGD wasalsothe bestaccord-
ing to non-metricstressfor small D on the Word task. Un-
lessoneis concernedvith usinga non-metricmethod OGD
seemdo be a betterchoicethanMGD. It generallyachierzes
superiorperformancandalsocornvergesmorequickly. This
is partially dueto the factthatit is non-metricand partially
dueto theuseof sigmoidally-transformegaluesin comput-
ing thevectordistancesilt is true,however, thattime to con-
vergenceof MGD could bereducedwith the useof a polar
izing costfunction.

Innumerablevariantsof thesemethodsarepossibleandit
is likely they couldbothbeimprovedwith furtherwork.

10.3. GBF and GBFS

The GBFS methodis essentiallythe one usedby Clouse
andCottrell (1996),althoughthe currentimplementatiorbe-
gins with a randomprojectionandis operatedn a greedy
fashionrather than by flipping randombits with positive
gain. GBFSconsistentlyproducessery goodsolutions.Un-
fortunately it suffers from being quadraticin D and more
thanquadratidn N.

Becauseét usesa linear costfunction,the GBF methodis
ableto cut cornersandrun muchmorequickly, with only a
modestlossin performanceon the Exemplartask. On the
Word task,GBF doesnot do aswell, andhasparticulartrou-
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ble with smallD. NeverthelesshothGBF andGBFSappear
to be strictly worsethan GMC, in termsof runningtime as

well as performance.Although the speedof both methods
couldbeimprovedby terminatingtheoptimizationearly, this

would only hurt performance.

10.4. GMC

The GMC algorithmseemso be currentlythe bestover-
all choicefor BMDS. It is the fastestof the algorithmsand
produceshe bestor nearlythe bestresultsaccordingto the
stressmeasuresandalsoachieved the bestgoodnesscores
on the exemplartask. But it shouldbe notedthat OGD did
achieve bettergoodnessatingson the Word task, andthus
may be preferablein casesvherenon-metricsolutionsare
acceptablandthe similarity structureis relatively comple.

TheGMC algorithmhasanumberof otheradvantageslts
runningtime is well understoodUnlike the gradientdescent
andbit flipping methodsGMC runsfor aconsistenandpre-
dictableamountof time. As with GBF andGBFS,but unlike
the gradientdescentmethodsGMC canbe modifiedto pro-
duceonly uniguevectorsby simply addinga termto the cost
function. Thismaybearequiremenfor someapplicationof
BMDS. For example,it couldbe problematidf two different
wordsareassignedxactly the samemeaning.

GMC canalso be usedwith a variety of costfunctions,
althoughit is not quite as flexible as the gradientdescent
methodsin this regard becausehe costmustbe incremen-
tally calculable. Finally, GMC is very easyto implement.
Unlike the gradientdescentmethods thereare no learning
ratesor otherparameterso adjust,nor complex derivatives
to compute.Unlike thebit flipping methodsthealgorithmis
simpleandstraightforvardwith minimal recordkeeping.

10.5. Conclusion

With the exceptionof SVD and possibly GBFS, the bi-
nary multidimensionalscaling methodspresentechere are
capableof handlingproblemsof reasonablhigh complexity.
However, evenGMC, with arunningtime of ©(N?(M + D))
will not scaleup well to problemswith hundredsof thou-
sand=f itemsor dimensionsTo solve suchlarge problems,
moreefficient, thoughperhapdesseffective, techniqueswill
be needed.Onepossibilityis to usea limited setof R refer
enceitems. All itemsare positionedrelative to thosein the
referenceset, but not necessarilyelative to oneanother If
the dimensionalityof thefinal spacds nottoo large,theref-
erencevectorsmay sufficiently constrainthe positionsof the
otheritemsrelative to oneanotherto producea goodoverall
solution. Variantsof this ideaarepossiblewith all of theal-
gorithmspresentedhere althoughnotalwaysconjointly with
theuniguenessonstrainofferedby thebit-spacemethods.

Codefor ary of thesemethodscan be obtainedby con-
tactingthe author
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