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Multidimensionalscaling(MDS), roughly speaking,is the processof transforminga setof
points in a high dimensionalspaceto a lower dimensionalonewhile preservingthe relative
distancesbetweenpairsof points.Althougheffectivemethodshavebeendevelopedfor solving
avarietyof MDS problems,they mainlydependonthevectorsin thelower dimensionalspace
having real-valuedcomponents.For someapplications,thetrainingof neuralnetworksin par-
ticular, it is preferableor necessaryto obtainvectorsin adiscrete,binaryspace.Unfortunately,
MDS into a low-dimensionaldiscretespaceappearsto bea significantlyharderproblemthan
MDS into a continuousspace.This paperintroducesandanalysesseveral differentmethods
for performingapproximatelyoptimized,binaryMDS.

1. INTRODUCTION

Recentapproachesto artificial intelligenceandmachine
learninghavecometo rely increasinglyondata-drivenmeth-
odsthatinvolvelargevectorspaces.Oneapplicationof high-
dimensionalvectorsthat is particularly relevant today is in
representingthe contentsof largecollectionsof documents,
such as all texts available on the internet. The similarity
structurein thesevectorspacescanbeexploited to perform
avarietyof usefultasks,includingsearching,clustering,and
classification(see,e.g., Deerwester, Dumais,Furnas,Lan-
dauer, & Harshman,1990;Berry, Dumais,& O’Brien,1994).
Other popularapplicationsof vector spacesinclude repre-
sentingthe contentof images(Beatty& Manjunath,1997)
andthemeaningsof words(Lund& Burgess,1996;Burgess,
1998;Clouse,1998).

However, it is often inefficient, if not intractable,to per-
form complex analysesdirectly in high-dimensionalvector
spaces.If onecouldreducethesetof high-dimensionalvec-
tors to a setof vectorsin a muchlower-dimensionalspace,
while preservingtheir similarity structure,operationscould
beperformedmoreefficiently on thesmallerspacewith the
potentialaddedbenefitof improved resultsdue to reduced
noiseandgreatergeneralization.Scalingto aspacewith just
one,two, or threedimensionsalsopermitseasyvisualization
of theresultingspace,whichcanleadto abetterunderstand-
ing of its overall structure.

In orderto placethecurrentwork in an historicalframe-
work, let usbriefly tracethedevelopmentof modernmultidi-
mensionalscaling(MDS) techniques.Most applicationsof
MDS, particularlyin the psychologicaldomains,have been
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in theanalysisof humansimilarity ratings.Thus,ratherthan
beginning with points in a high dimensionalvector space,
a more commonstarting point hasbeena matrix of pair-
wise comparisonsof a setof items. Varioustypesof com-
parisonsmight beused,includingsimilarity or dissimilarity
judgments,confusionprobabilities,or interactionrates.One
problemintroducedby theuseof measuresof thissortis that
it isn’t clearhow bestto scaletheseratingssothat they cor-
responddirectly to distancesin the vectorspace.Subjects’
ratingsmaybequiteskewedandarelikely to benon-metric.

Perhapsthe earliestexplicit and practicalMDS method
was that of Torgerson(1952),which grew out of the work
of Richardson(1938) and Youngand Householder(1938),
amongothers. Torgersonuseda one-dimensionalscaling
techniqueto convert dissimilarity ratingsto targetdistances
andthenattemptedto find asetof pointswhosepairwiseEu-
clideandistancesbestmatchedthe targetdistances,accord-
ing to mean-squarederror. Theinitial scalingfunctionmight
simply be a linear transformation,or could be a non-linear
function, suchasan exponential.While quite effective, the
formalrequirementsof thistechniquearetoostrongfor many
applicationsanda seriousdrawbackis that the properscal-
ing methodis difficult to determineandmayvary from one
problemto thenext.

The next major advancewas madeby Shepard(1962),
who suggestedthat,ratherthanattemptingto directly match
scaledtargetdistances,thegoalof MDSshouldbeto obtaina
monotonerelationshipbetweentheactualpointdistancesand
theoriginaldissimilarities.Thus,thedissimilaritiesneednot
bescaled,andtheir valuesareactuallydiscardedaltogether.
All thatis retainedis their relativeordering.Torgerson’sear-
lier approachcameto beknown asmetric MDS andthisnew
techniqueasnon-metric MDS.However, Sheparddidn’t pro-
vide a mathematicallyexplicit definitionof whatconstitutes
a solution.

Kruskal (1964a,1964b)furtherdevelopedthemethodby
explicitly defininga function, known as stress, relating the
pairwisedistancesandthe rankingof dissimilarities.Stress
essentiallyinvolves the scaledsum-squarederror between
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the pairwisedistancesandthe best-fittingmonotonictrans-
formationof theoriginal dissimilarity ratings. Iterative gra-
dientdescentwasusedto find theconfigurationwith minimal
stress.

The basictechniquedevelopedby ShepardandKruskal
has remainedthe standardfor most applicationsof MDS
to psychologicalphenomena(Shepard,Romney, & Nerlove,
1972; Borg & Groenen,1997). Although possiblyslower,
gradientdescenttechniqueshave theadvantageovermatrix-
algebramethodsin that they canmoreeasilytoleratemiss-
ing or sparsedataandcanbeusedto minimizeany differen-
tiablemeasureof stress.Non-metricMDS is quiteeffective
whensimilarity ratingsinvolve unknown distortions. How-
ever, relying on rank ordersometimesdiscardsinformation
thatcan’t berecovered(Torgerson,1965). This maybepar-
ticularly truein caseswherethestructureof thedatainvolves
a numberof tight clustersthat arewell separated(Shepard,
1966).Thus,metricmethodsmaybemoresuitablefor some
typesof data,but for thevastmajority of problemsof prac-
tical interest,non-metricmethodsarelikely to beasgood,if
not better.

A commonfeatureof theMDS techniquesdiscussedthus
far is that they rely on the final vector spacehaving real-
valued components. However, someapplicationsrequire
vectorswith discrete,usuallybinary, components.That is,
thevectorsshouldlie at thecornersof a unit hypercube.An
importantapplicationof this typeis thedevelopmentof rep-
resentationsfor trainingneuralnetworks. Increasingly, neu-
ral networksthatserveascognitivemodelsaretrainedusing
inputsor targetsderivedfrom realdata,ratherthanartificially
generatedvectorsets.But thosedatasetsmay involve vec-
torsof high dimensionality, possiblyin thetensor hundreds
of thousands,andit would becomputationallyintractableto
traina network usingsuchlargevectors.

Furthermore,neuralnetworks with thresholdedoutputs,
particularlyrecurrentattractornetworks(Pearlmutter, 1989;
Plaut& Shallice,1993),oftenlearnbetterwhentheir vector
targetsusebinarycomponents.It is harderfor thenetwork to
accuratelydriveoutputunitsto intermediatelevelsof activa-
tion thanto drivethemto fully activeor inactivestates.Thus,
it is sometimesnecessaryto scalea setof high-dimensional
vectorsto a relatively low-dimensional,binaryvectorspace.

BinaryMDS(BMDS) is amuchharderproblemthanstan-
dardMDS. In fact,it hasbeenshownthatembeddingametric
distancespacein a bit spacewith minimal distortionis NP-
complete(Deza& Laurent,1997).1 Thus, thereis a good
chancethatno polynomial-timealgorithmexiststo compute
an optimal setof BMDS vectors. However, it may still be
possibleto efficiently computeanapproximationto theopti-
malBMDS solution.

This paperpresentsseveral methodsfor performingap-
proximatelyoptimalBMDS. Thesolutionsfall in two broad
classes:thosethat perform the optimizationdirectly in bit
spaceand so-calledhybrid methodsthat perform the opti-
mization in a real-valuedspacebeforeconverting to a bit
space.

The first hybrid methodis somewhat similar to Torger-
son’s linear-algebraicapproachto MDS. It begins by com-

putingthesingularvaluedecompositionof thematrix of ini-
tial vectors. The right singularvectorsare then converted
to bits usinga unaryencoding,with morebits assignedto
vectorshaving largersingularvalues.

Two other hybrid methodsare basedon Shepardand
Kruskal’stechniquefor MDS.Gradientdescentis performed
in a real-valuedvectorspaceusing the stresscost function
beforethevectorcomponentsareconvertedto bits basedon
their signs. One of thesevariantsis metric in that it uses
the actualtarget valuesin computingthe stress.The other
methodusesamonotonictransformationof thetargetvalues,
ratherthanthevaluesthemselves.

Themajorproblemwith hybrid techniquesis that impor-
tant information can be lost in the discretization. A very
good real-valuedsolution may turn into a very bad binary
solution. An alternative approachis to perform the bulk
of the optimizationdirectly in bit space. The only known
prior algorithmfor computingBMDS directly in bit spaceis
thatof ClouseandCottrell (1996)andClouse(1998).Their
methodbeganby creatinga setof bit vectorsfor eachitem
by thresholdingvaluesfrom the original high-dimensional
vector. They thenperformeda randomwalk by repeatedly
selectingbits at random,computingwhetherflipping thebit
would improvetheoverallcost,anddoingsoonly whenben-
eficial. Onceit wasdeterminedthatno improvementscould
bemadeby flipping any onebit, thealgorithmterminated.

Onedrawbackof theClouseandCottrellmethodis thatit
is computationallyinefficient. Without goodrecordkeeping,
it is costly to determinewhethera bit flip is advantageous.
As thenumberof remaininggoodbits diminishes,thealgo-
rithm becomeslessandlessefficientbecausemany bitsmust
be testedbeforeany progresscanbemade.Thealternative,
exhaustively testingall bits beforedecidingwhich to flip, is
not muchbetter. Thus, the algorithmdoesn’t scalewell to
largerproblems.

The first fully-binary methodpresentedhere is an im-
provedversionof ClouseandCottrell’s algorithm.By using
carefulrecordkeeping,it is ableto keeptrackof thechange
in costthatwould resultfrom flipping any bit andto quickly
find thebit thatwouldresultin thegreatestimprovement.Al-
thoughthereis somecostfor the recordkeeping,it is more
thanmadeup for by the fact that the algorithmneednever
testa bit only to discover that flipping it would be counter-
productive.A moreeffective,thoughlessefficient,versionof
this algorithmminimizesthe sumof the squareddifference
betweenactualandtarget distances,ratherthanthe sumof
theabsolutedifferences.

1 Actually, it is NP-completeto decidewhetherametricdistance
spaceis

�
1-embeddablewith no distortion. It follows that finding

a minimally distortedembeddingof a metric spaceinto a binary
spaceunderan

�
1 distancemeasure(suchasHammingdistance)is

NP-complete.However, theoriginal setof distancesin theBMDS
problemsconsideredherearemore restrictedthana metric space
becausethey representdistancesbetweenpairsof points.Thus,the
known proof maynot apply. Nevertheless,it seemslikely thatde-
cidingwhetheran

�
2- or

�
1-embeddablemetricspaceis embeddable

in an
�
1-spaceof lowerdimensionalityis alsoanNP-completeprob-

lem.
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The final methodintroducedin this studyconstructsthe
bit vectorssequentially, choosingthefirst bit in eachvector,
followed by the secondbit in eachvector, andso on. The
algorithmtheniteratesseveral times,reassigningthe bits in
eachdimensiongiven the otherbits previously chosen.Al-
thoughsimpleandrelatively easyto implement,this method
is quitefastandeffective.

Thenext sectionintroducesthetasksandmetricsusedto
evaluatetheBMDS methods.Eachmethodis thendescribed
in furtherdetail, including thedetailsof its implementation,
advantagesanddisadvantages,andsomepossiblevariations.
Finally, the methodsareevaluatedin termsof performance
andrunningtime. It is hopedthatthisstudywill proveuseful
to researchersinterestedin immediateapplicationsof binary
multidimensionalscalingand that it will inspire future ad-
vancesin thesemethods.

2. EVALUATION METRICS AND
EXAMPLE TASKS

BeforedescribingtheactualBMDS algorithms,we begin
by definingthescalingtaskmoreexplicitly. Theinput is aset
of N real-valuedvectorsof dimensionalityM, representingN
items. The output is a setof N bit-vectorswith dimension-
ality D. Thegoal is for therelativedistancesbetweenthefi-
nalvectorsto reflecttherelativedistancesbetweentheinitial
vectorsascloselyaspossible.To make this moreconcrete,
we mustdefinethefunctionsmeasuringpairwisedistancein
theoriginalandfinal spacesandameasureof how well these
two setsof distancesagree.

Therearea numberof reasonabledistancemetricsfor the
originalspace,four of whichareshown in Table1. Euclidean
distanceor city-block distancearestandardchoices. How-
ever, they aredependenton the dimensionality, M, andthe
scalingof thevectors,makingthemsomewhatinconvenient.
Cosineis anotherreasonablechoice.It is scaleinvariantand
is confinedto a fixed range, ��� 1 � 1� , which is moreconve-
nientthanmeasuresthatdependondimensionalityandaver-
agevaluemagnitude.

A fourth possibility, andthe oneusedin this study, is to
basethedistancemeasureon Pearson’scorrelation.Likeco-
sine, it is scaleinvariant and is confinedto a fixed range,��� 1 � 1� . Computationally, correlationandcosineareidenti-
cal except that cosineis calculatedusing the actualvector
componentswhile correlationis basedon thedifferencesbe-
tweenvectorcomponentsandtheirmean.If componentsare
evenlydistributedbetweenpositiveandnegativevalues,their
meanis usuallycloseto zeroandcosineandcorrelationare
quitesimilar. But if componentsareconstrainedto be non-
negative,cosinewill bepositive while correlationcontinues
to usethefull ��� 1 � 1� range.Correlationis thusagoodinitial
choicefor many scalingproblems. In practice,using cor-
relationhasleadto betterresultsthanusingthe other three
measureswith severaldifferenttasksandBMDS algorithms.

In order to turn correlationinto a distancemeasure,it is
scaledby � 0 � 5 andshiftedby 0.5sothatacorrelationof 1.0
becomesa distanceof 0 anda correlationof -1.0 becomes

Distance Measure Formula
City-block ∑k � xk � yk �
Euclidean 	 ∑k 
 xk � yk � 2
Cosine 0 � 5 � 0 � 5 ∑k xkyk�

∑k x2
k ∑k y2

k

Correlation 0 � 5 � 0 � 5 ∑k  xk � x̄ �  yk � ȳ ��
∑k  xk � x̄ � 2 ∑k  yk � ȳ � 2

Table1
Some candidate distance measures.

a distanceof 1.0. The set of all pairwisecorrelationdis-
tanceswasthenscaledby aconstantfactorto achieveamean
valueof 0.5, althoughthis haslittle practicaleffect because
themeandistancetendedto bevery closeto 0.5beforescal-
ing. This linearly transformedcorrelationwill bereferredto
ascorrelation distance. Although it wasnot donehere,one
could scalethe resultingvaluesusing an exponentialwith
exponentgreaterthan 1 to increasethe influenceof larger
distancesor lessthan1 to enhancethesmallerdistances.

Thesimplestandmostreasonablechoicefor thedistance
metric in bit spaceseemsto be Hamming(city-block) dis-
tance.That is, thedistancebetweentwo vectorsis thenum-
ber of bits on which they differ. Note that for bit vectors,
Euclideandistanceis just the squareroot of the Hamming
distance.Likewise, if thebit vectorstendto have a roughly
equalnumberof 1sand0s,which seemsto bethecasewith
mostof theseBMDS methodsin practice,Hammingdistance
is closelyapproximatedby correlationdistance(whenscaled
by D).

The third function that we must specify evaluatesthe
agreementbetweenthe correlationdistancesin the original
spaceandthe Hammingdistancesin the final binary space.
It’s not entirelyclearwhat is thebestmeasure.Oneobvious
choiceis to useKruskal’s stress (Kruskal,1964a):

metric stress � �
∑i � j 
 di j � ti j � 2

∑i � j d2
i j

wherei and j togetheriterateoverall pairsof items,di j is
the Hammingdistanceof i and j’s bit vectorsandti j is the
correlationdistanceof i and j’s initial vectors,scaledby the
dimensionalityof thebit vectors,D.

An alternative form of this measure,andtheoneactually
usedby Kruskal,is non-metricstress.In thiscase,theactual
distancesarenotdirectlycomparedto thetargetdistancesbut
to thebestmonotonictransformationof thetargetdistances:

non-metric stress � ���� ∑i � j 
 di j � d̂i j � 2
∑i � j d2

i j

whered̂i j arethosevaluesthatachieveminimalstress,un-
der the constraintthat the d̂i j have the samerank order as
the correspondingti j. Non-metricstressis a bettermeasure
if oneis only concernedwith preservingtherank-orderrela-
tionshipbetweenpairwisedistances.But if oneis concerned
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with directly matchingthe target distances,metric stressis
preferable.

An alternative methodof evaluatingthe final vectorsis
to computePearson’s correlationbetweentheoriginal setof
pairwisedistancesamongvectorsandthoseof thefinal vec-
tors. This measureis referredto hereas goodness and is
definedmathematicallyasfollows:

goodness � ∑i � j 
 di j � d̄ � 
 ti j � t̄ ��
∑i � j 
 di j � d̄ � 2 ∑i � j 
 ti j � t̄ � 2

Note that the optimal stressvalue is 0 and the optimal
goodnessvalue is 1; bettervectorsshould result in lower
stressbut highergoodness.Goodnesshasthe propertythat
it is unaffectedby linear transformationsof the distances,
so scaling and shifting the target distanceshas no effect
on goodness.Becausemetric stress,non-metricstress,and
goodnessdonotalwaysagreeonwhichis thebestsetof vec-
tors,all threemeasuresarereportedin theanalysisfoundin
Section9. In Section9.3, the practicaldifferencesbetween
thesemeasuresis discussed.

2.1. Example tasks

Two BMDS taskswereusedin testingthealgorithmspre-
sentedhere.Thefirst, knownastheExemplar task,wascom-
pletelyartificial. It consistedof 4,000vectorsof dimension-
ality 1,000,generatedin thefollowing way. First,10random
bit vectorsof length50 wereproduced.Eachof the 4,000
vectorswascreatedby takingoneof the10 exemplars,flip-
ping eachbit with 10% chance,and then doing a random
projectionto real-valued1,000-dimensionalspace.The re-
sulting vectorsethasa basicallysimplesimilarity structure
with a good deal of randomnesssuperimposed.Because,
prior to the randomprojection,the vectorsoccupieda 50-
dimensionalbit space,thevectorsshouldbequitecompress-
ible.

Thesecondtask,theWord task,involves5,000vectorsof
length4,000representingword meanings.Thevectorswere
generatedusinga methodsimilar to HAL (Lund & Burgess,
1996).Word co-occurrencesweregatheredovera largecor-
pus of Usenettext. Raw co-occurrencecountswere con-
vertedto a ratio of the conditionalprobability of oneword
occurringin theneighborhoodof anotherto theword’sover-
all probabilityof occurrence.Thefirst 4,000valuesof each
word’s vector, reflecting its co-occurrenceswith the 4,000
othermostfrequentwords,wastakenastheword’smeaning
vector. Thissethasa morecomplex similarity structurethan
theExemplarset.

Note that theseproblemsare considerablylarger than
thoseto which MDS is typically applied,which generally
involve no morethana few hundreditems.ClouseandCot-
trell (1996)reportedan exampletask involving 233 words.
Becauseany reasonableMDS algorithm will likely have a
running time that is at leastO 
 N2 � , the tasksstudiedhere
areeffectively severalhundredtimesmorecomplex. Of crit-
ical concernwill benot only theability to achieve low stress

or high goodness,but the runningtime of the variousalgo-
rithms.

3. SVD: THE SINGULAR-VALUE
DECOMPOSITION METHOD

Thesingularvaluedecomposition(SVD) is thefoundation
for theLatentSemanticAnalysistechniquefor documentin-
dexing andretrieval (Deerwesteret al., 1990).It hasalsore-
cently receivedconsiderableattentionfor its usein efficient
clusteringmethods(Frieze,Kannan,& Vempala,1998). It
thereforeseemsnaturalto considerdesigninga BMDS al-
gorithm using the singularvaluedecomposition.This first
method,which is basedon computingthe SVD of the item
vectormatrix, is somewhat relatedto the metricMDS tech-
niqueof Torgerson(Torgerson,1952).

Any realmatrix,A, hasauniquesingularvaluedecompo-
sition,whichconsistsof threematrices,UΣV , whoseproduct
is the original matrix. Thefirst of these,U , is composedof
orthonormalcolumnsknown asthe left singular vectors and
the last,V , is composedof orthonormalrows known asthe
right singular vectors. Σ is diagonalandcontainsthesingu-
lar values. Thesingularvectorsreflectprinciplecomponents
of A andeachpair hasa correspondingvalue,themagnitude
of which is relatedto thevarianceaccountedfor by thevec-
tor. If A is symmetricandpositivesemi-definite,theleft and
right singularvectorswill be identicalandequivalentto its
eigenvectorsandthesingularvalueswill beits eigenvalues.

Non-binarymultidimensionalscaling can be performed
usingtheSVD asfollows. Let A betheM � N matrix whose
columnsaretheoriginal itemvectors.TheSVD is computed
andthe right singularvectorsaresortedby decreasingsin-
gularvalue.Only thefirst D vectorsandvaluesareretained.
The new representationof item i is the vectorcomposedof
the ith valuein eachof theD highestright singularvectors,
scaledby its correspondingsingularvalue.

3.1. Discretization

In orderto performbinaryMDS, thevaluesmustbecon-
vertedto bits. Onecouldsimplyusethefirst D right singular
vectorsandassigna singlebit to eachcomponent.But this
would not bevery effectivebecausethevectorswith highest
valuecontainmostof theusefulvariance.Furthermore,there
areoften fewer thanD non-zerosingularvalues. Thus,we
mayneedto assignmorethanonebit to eachright singular
vector. Themethodfoundto bemosteffectiveis to assignthe
bits roughly in proportionto the magnitudesof the singular
values.A deterministicprocedureis usedto accomplishthis.
Thefirst bit is assignedto thevectorwith thelargestsingular
value. Its valueis thenhalved. The secondbit is assigned
to the vectorwith the singularvaluethat is now the largest.
Oncetwo bits have beenassignedto a vector, its valueis set
to 1/3 of its original value. For threebits, its valueis 1/4 of
theoriginal,andsoon.

Assume,for example,that we hadthreesingularvectors
with values12,9, and5 andwewereto assign5 bits(D � 5).
The first bit goesto the first vectorandits valueis reduced
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to 6. Thesecondbit goesto thesecondvectorandits value
is reducedto 4.5. Thethird bit goesto thefirst vectoragain,
becauseit is onceagainthe largestvalue. Its valueis setto
4 (12/3). Bit 4 goesto thethird vector, becauseit is now the
largest,andits valueis reducedto 2.5.Theremainingvalues
are4, 4.5,and2.5 andthelastbit goesto thesecondvector.
In theend,thefirst two vectorshave beenassignedtwo bits
andthelastvectorone.

Thebits arethengivenvaluesusinga unaryencoding.If
a vectorhasthreebits assignedto it, the possiblecodesare
000,001,011,and111. This may not seemto be the most
efficientuseof thebits,but it is theonly methodthathasthe
appropriatesimilarity structurebetweencodes. The codes
areassignedto itemsasfollows. Eachright singularvector
hasN componentscorrespondingto theN items. Theseare
sortedandpartitionedevenly into the samenumberof bins
asthereareunarycodes.With threebits therewould befour
bins. The itemsin the first bin would receive the bits 000.
Thosein the secondbin would receive the bits 001,andso
on.

3.2. Running time

A majorproblemwith theSVD methodis thatcomputing
theSVD is quiteslow. Becausethematricesaredense,com-
putingtheSVD takesΘ 
 N2 
 N � M ��� time. If N is largerthan
M, thematrix A canbetransposedandthe left singularvec-
torsused,giving arunningtimeof Θ 
 M2 
 M � N ��� . However,
it is no fasterto run the SVD algorithmwith small D than
with large D. Using a 500MHz 21264Alpha processor, it
takes25 minutesto computetheSVD on theExemplartask.
But on theWord problem,with N � 5000andM � 4000,it
runsfor nearlyaday.

3.3. Variants

If oneknowsthatacertainsubsetof itemsis representative
of theothers,it is possibleto speedup theSVD computation
by only using that subsetto generatethe singularvectors.
Althoughthis might enabletheSVD methodto tacklemuch
largerproblems,it hindersperformance.As we’ll seein Sec-
tion 9, theSVD methodof BMDS doesquitepoorly to begin
with. Several alternative discretizationmethodshave been
tested,but werenot foundto beaseffective.

4. MGD: THE METRIC GRADIENT
DESCENT METHOD

Thesecondhybrid methodusesgradientdescentto opti-
mizetheitemvectorsin a real-valuedspacebeforediscretiz-
ing them. It is similar to more traditionalMDS in the use
of the stresscost function andgradientdescent,but differs
from themin that it is metric. The stressmeasureuseslin-
earlytransformedtargetdistances,ratherthanmonotonically
transformedtargets.

4.1. Initialization

Thefirst stepof thegradientdescentmethodis to createan
initial setof N real-valuedvectorsof dimensionalityD. The
vectorscould be assignedrandomly, asis typically donein
standardMDS. However, this tendsto result in anunneces-
sarily longminimizationprocess.A betterapproachis to use
a fastmethodto createmoderatelygoodinitial vectors.One
nice way to producegood initial vectorsis with a random
projection.

First, D randombasis vectors of dimensionalityM are
generated.The elementsof the basisvectorsare draw in-
dependentlyfrom aGaussiandistribution. For eachitem,the
correlationbetweenits original vector, having dimensional-
ity M, andeachof theD basisvectorsis computed,andthese
D correlationsform thecomponentsof theitem’s initial vec-
tor in thesmallerspace.

This randomprojectionis reasonablyfast,Θ 
 NMD � , and
preservesmuchof theinformationin theoriginalvectors,es-
pecially if D is large. Evenwithout theminimizationphase,
the randomprojectiongoesa long way toward solving the
BMDS problem. However, thereis still considerableroom
for improvementto justify the moreexpensive optimization
process.

4.2. The cost function and its derivative

The goal of the optimization phaseis to minimize the
stressbetweentheactualvectordistancesandthescaledtar-
getvectordistances:

S ��� S �
T � � �

∑i � j 
 di j � b ti j � 2
∑i � j d2

i j

i and j togetheriterateover all pairsof items,di j is the
city-block distanceof i and j’s vectorsin thenew space,ti j
is thecorrelationdistanceof i and j’s initial vectors,andb is
anadjustablescalingfactor.

At the start of eachstepof the iteration, the valueof b
is computedthat resultsin minimal stress. This methodis
commonlyknown asratio MDS, asit seeksto minimizethe
discrepancy betweenactualandtarget distanceratios. The
optimalvalueof b is givenby:

b � ∑i � j di jti j

∑i � j t2
i j

Next, the derivative of the stresswith respectto eachof
the ND vectorcomponentsis computed.This derivative is
givenby thefollowing formula:

∂S
∂ik

� ∑
j � di j � b ti j�

S � T � � di j

�
S �

T � � T � � ∂di j

∂ik

Whenusingcity-blockdistance,thederivativeof distance
di j w.r.t. componentik is simply sgn 
 ik � jk � , or 1 if ik ! jk
and-1 otherwise.
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4.3. Component updates

Oncethe ND derivativeshave beenaccumulatedover all
item pairs, the vector componentsare updatedby taking a
small stepdown the directionof steepestdescent.The size
of thestepis scaledby a learningrateparameter, α. Follow-
ing Kruskal (1964b),it is alsoscaledby the r.m.s. valueof
all vectorcomponentsandthe inverseof the r.m.s. deriva-
tive. The reasonfor this scalingis that it reducesthe need
to otherwiseadaptthelearningrateto thesizeof theoverall
problem.Thecomponentupdateformulais asfollows:

ik � ik � α
	 ∑i " b ib�

∑i " b ∂S
∂ib

∂S
∂ik

In orderto preventthevectorcomponentsfrom shrinking
or growing to a point whereprecisionis lost, they arenor-
malizedfollowing eachupdateto maintainanr.m.s.valueof
approximately1.

At the endof the minimization, the real-valuedcompo-
nentsare convertedto bits basedon their signs. Negative
componentsbecome0sandpositivecomponentsbecome1s.

4.4. Learning rate adaptation and stopping crite-
rion

Despitethe learningratescalingfactors,it is still neces-
saryto adaptthelearningrateastheminimizationproceeds.
In general,a larger learningrate is usedinitially and then
progressively reducedasaminimumis approached.Theini-
tial valueof the learningratewas0.2, which hasproven to
bea goodchoicefor tasksof widely varyingsize.

Thegeneralproblemof automaticallyadaptingthelearn-
ing rate during a gradientdescentto achieve the bestper-
formanceis an interestinganddifficult one. The following
methodis basedon observationsof what experiencedhu-
mansdo when adjustinga learningrate by hand. It is by
no meansoptimal, but it doesseemto work quite well for
any gradientdescentthat hasa smooth,fairly stableerror
function,suchasthecurrentproblemor whentrainingneural
networksunderbatchpresentation.

The learningrateandterminationcriterion arebasedon
two measures,knownasprogress andinstability. Progress,is
thepercentchangein overall stressfollowing thelastweight
update,andis definedas:

progress � Pt � St � 1 � St

St � 1

where St is the current stressand St � 1 is the previous
stress.A positive P value indicatesthat the stressis being
reduced,which is good. If P ever becomesnegative, the
learningrate is immediatelyscaledby 0.75. This normally
resultsin a returnto positiveprogresson thenext update.

Instability is a time-averagedmeasureof the consistency
of theprogress,andis definedasfollows:

instability � It � 0 � 5 #%$ It � 1 �'&&&& Pt � 1 � Pt

Pt � 1
&&&& (

Steadyprogressresultsin low instability. Whenever the
learningratechanges,instability is resetto 10. If progress
is high andthe instability is low, thingsareproceedingwell
andno changesareneeded.If progressis unstable,it often
indicatesthat the learningrate is a bit too high. But it is
usuallynot worth loweringtherateunlessnegative progress
is made.Theonly casewhereit is generallya goodideato
increasethelearningrateis whenprogressis slow andstable.
Thus,whenever the progressis lessthan0.02(2%) andthe
instability is lessthan0.2,thelearningrateis scaledby 1.2.

The minimization terminateswhenthe progressremains
below 0.001(0.1%)for 10 consecutive updates.On theex-
ampletasksusedhere,thealgorithmgenerallyterminatesin
between50 and250updates,dependingon the valuesof N
andD.

4.5. Running time

As with any gradientdescenttechnique,it is difficult to
predict in advancehow many updateswill be required. In
general,the length of the settling processincreasesa bit
with larger N andD. The cost for eachupdateis Θ 
 N2D � .
Therefore,the algorithmtendsto be somewhat worsethan
quadraticin N andsomewhat worsethan linear in D. The
runningtime is evaluatedempiricallyin Section9.4.

4.6. Variants

Oneof theadvantagesof gradientdescentmethodsis that
they areextremelyflexible andpermit endlessvariation. In
addition to the stresscost function and the city-block dis-
tancefunction,summedandsum-squaredcosthavealsobeen
tested,aswell asEuclideandistance.Noneof thesealterna-
tivesperformedaswell with metric gradientdescenton the
currenttasksasdid stressandcity-block distance.

Furthermore,variousmethodsof scalingthe target dis-
tanceshave alsobeentested.Ratherthanscalingthetargets
by an adaptive factor, b, they could simply be usedin their
raw form of correlationdistancesscaledby D. Alternately,
onecouldtransformthedistancesby a � b ti j, wherea andb
arebothadjustedto minimizetheoverallcost.This is known
asan interval scale.Using an interval scale,althoughmore
flexible, proved slightly lesseffective on the currentprob-
lems. Onecould further loosenthe restrictionson the tar-
getdistancesby usingtheoptimalmonotonictransformation,
asin KruskalandShepard’snon-metricMDS technique,but
thatis thesubjectof thenext algorithm.

It maybepossibleto improvetherateof convergencewith
a betterautomatedprocedurefor adjustingthe learningrate.
Anotherpromisingadditionwould be the useof a momen-
tum termon the componentupdatestep,asis oftendonein
trainingneuralnetworks. Momentumaddsa fractionof the
previousstepin vectorspaceto the currentstep,which can
oftenspeedlearning.

Finally, asonemight expect,a major problemwith this
methodof BMDS is that significant information is lost in
thediscretizationstep.Althoughthecity-blockdistancesbe-
tweenpairsof vectorsmay matchthe target distancesvery
well, thosecity-blockdistanceswill notaccuratelyreflectthe
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Hammingdistancesof the correspondingbit vectorsunless
the real-valuedcomponentsare closeto -1 or 1.2 Thus, it
may be beneficialto introducean additionalcost term that
penalizescomponentsfor being far away from -1 or 1. A
simplepolarizingcost function is the absolutevalueof the
distancebetweenthevalueand-1 or 1, whichever is closer.
Thiswouldaddaconstant-sizetermto thevalueoneachup-
date,having theeffectof pulling thevaluetowardsthecloser
of 1 and-1. Like thelearningrate,thesizeof thatstepis an
adjustableparameter.

A somewhat moresophisticatedpolarizingcost function
is 
 i4k � 2i2k � 1�*) 4. This is shapedlike a smoothW. It has
concave upward minima at 1 and -1 and a concave down-
ward maximumat 0. At valueslarger than -1 or 1 it in-
creasesrapidly, heavily penalizinglarge values. It is nice
becausethereareno discontinuities,which candisrupt the
gradientdescent.The derivative of this function is simply
i3k � ik. Thus,at eachweightstep,i3k � ik, multiplied by the
costparameter, is subtractedfrom eachvalue.

Experimentationwith thesecost functionsindicatesthat
they are quite effective in speedingthe convergenceof the
gradientdescent.However, whenusingmetric gradientde-
scentthey don’t seemto do muchto improve the quality of
theresultingvectors.

5. OGD: THE ORDINAL GRADIENT
DESCENT METHOD

This next methodis basedmorecloselyon Shepardand
Kruskal’s gradient descenttechniquefor MDS (Shepard,
1962;Kruskal,1964a).Ratherthanusinglinearlyscaledtar-
getvaluesin computingthestress,thebest-fittingmonotonic
transformationof thetargetvaluesis used.Thusthemethod
is non-metric,or ordinal, in that theactualtargetvaluesare
not important,only their rankordering.Exceptwherenoted,
all aspectsof thismethodareidenticalto thosefor MGD, in-
cludingtheinitialization step,theupdatestep,andthelearn-
ing rateadjustment.

5.1. Non-metric stress

Ordinalgradientdescentusesasits costfunctionthenon-
metricstressmeasure:

S �+� S �
T � � ���� ∑i � j 
 di j � d̂i j � 2

∑i � j d2
i j

whered̂i j arethosevaluesthatminimizethestress,under
the constraintthat the d̂i j have the samerank order as the
correspondingti j. Thederivativeof this functionw.r.t. com-
ponentik is thesameasfor metricstress,exceptthatb ti j is
replacedby d̂i j.

Theoptimal d̂i j valuesarecomputedon eachiterationus-
ing the up-down algorithmof Kruskal (1964b). In termsof
runningtime, thisprocessis linearin thenumberof distance
values,O 
 N2 � , andis thussignificantlylesscostlythancom-
putingthecomponentderivatives.

5.2. Sigmoidal components

As mentionedbefore,a major problemwith the gradient
descentmethodis the distortion introducedin discretizing
the realvaluesinto bits. If the realvaluesareeitherexactly
-1 or 1, the city-block distancebetweenreal-valuedvectors
will exactly correspondto the Hammingdistanceof the bit
vectorsandtherewill beno lossof information.However, if
therealvaluesaremuchlessthanor greaterthan1 in magni-
tude,thediscretizationwill introducenoise.This leadto the
ideaof addingacostfunctionthatencouragestherealvalues
to becloseto 1 or -1. However, suchcostfunctionswerenot
foundto beterribly helpful in practice.

An alternative is to transformthe vectorcomponentsus-
ing a sigmoid, or logistic, function, which limits valuesto
the range [0,1] and makes it easier for the gradient de-
scentto achieve nearly-discretevalues(Rumelhart,Hinton,
& Williams, 1986). Thesigmoidfunctionhasthefollowing
formula:

s 
 ik � � 1
1 � e � gik

This functionis shapedlikeaflattenedS.If ik � 0, s 
 ik � �
0 � 5. As ik increasesabove 0, s 
 ik � approaches1. As ik
decreasesbelow 0, s 
 ik � approaches-1. The parameterg
is known asgain andcontrolshow rapidly the sigmoidap-
proachesits limits. The advantageof the sigmoid is that it
is quite easyfor the gradientdescentto drive the effective
vectorcoordinates,s 
 ik � , closeto 1 or 0 by driving theactual
coordinatesto largepositiveor negativemagnitudes.

When using the sigmoid transformedcomponents,the
vectordistancefunctionandits partialderivativebecome:

di j � ∑
k
� s 
 ik � � s 
 jk � �

∂di j

∂ik
� g s 
 ik � 
 1 � s 
 ik �,� sgn 
 s 
 ik � � s 
 jk �,�

5.3. Polarizing cost

The sigmoid is only helpful if a goodproportionof the
vectorcomponentsactuallygrow fairly large (andthusap-
proach0 or 1 whenput throughthe sigmoid). In order to
encouragethis, anextra polarizingtermis addedto thecost
function. In theabsenceof thesigmoid,sucha costfunction
mustbe somewhat complex, asit shouldhave the effect of
pulling thevaluestowards-1 or 1, but notbeyondthem.Two
suchfunctionswerementionedin Section4.6. But whenthe
sigmoid is used,the cost function needonly pushthe raw
valuesaway from 0. Therefore,thesimplelinearcostfunc-
tion is used. This hasthe effect of addinga small constant
to the positive valuesandsubtractinga small constantfrom

2 If city-block distancesbetweenvectorswith componentsthat
areexpectedto fall closeto -1 or 1 areto becomparedto Hamming
distancesof bit vectorsformedfrom the signsof the components,
thecity-block distancesmustactuallybescaledby 1/2.
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thenegativevaluesoneachweightupdate.In evaluatingthis
method,aconstantof 0.05wasused.

Becausethe sigmoidavoids the problemof overly-large
componentsand the polarizing term prevents an overall
shrinking of components,thereis no needto re-normalize
thevaluesperiodically.

5.4. Running time

Becausethey involve an exponential,computingthe sig-
moids exactly can substantiallyslow down this algorithm.
Therefore,a fastapproximationto thesigmoidfunctionwas
used.Thesigmoidsof 1024valuesevenly distributedin the
range[-16,16]werecomputedin advanceandstoredin a ta-
ble. In computingthesigmoidof a new value,thesigmoids
of thetwo closestvaluesin thetablearelinearly interpolated.
This methodis quite fastandis accurateto within 2 � 10� 7

of thecorrectvalue.
Despitebeing somewhat more complex than MGD, the

asymptoticrunningtimeof thismethodremainsΘ 
 N2D � per
update.Becauseit tendsto converge fasterthanthe metric
method,however, theoverall runningtime is somewhatless.

5.5. Variants

The gain term in the sigmoid function determineshow
sharpthe sigmoidis andthushow polarizedthe valuesare.
A higher gain draws the resultingvaluescloser to 0 or 1,
and thusreducesthe noiseintroducedin the discretization.
However, a high gain canalsoimpedelearningin the min-
imization phase. Thus, one might think of startingwith a
small gain and gradually increasingit as the minimization
progresses.However, attemptsto do this resultedin no im-
provementover usinga fixedgainof 1.0. Usingotherfixed
gainvaluesalsoseemedto make little difference.

6. GBF: THE GREEDY BIT-FLIP
METHOD

This next methodis quite similar to that of Clouseand
Cottrell (1996),but thealgorithmhasbeenalteredto achieve
anasymptoticallyfasterrunningtime. Like thegradientde-
scenttechniques,this methodperformsa gradualminimiza-
tion. However, ratherthatworking in a real-valuedspace,it
operatesdirectly in bit space.

The optimizationproceedsby flipping individual bits, in
anattemptto minimizethelinearcostfunction:

cost � ∑
i � j

� di j � ti j �
wheredi j is theHammingdistancebetweenthebit vectors

for items i and j andti j is the correlationdistancebetween
their original vectors,scaledby D, the numberof bits per
vector. The advantageof the linearcostfunction is that the
contributionof individualbits in avectorto thecostareoften
independentof oneanother, whichallowsthealgorithmto be
muchmoreefficient. In thenext method,GBFS,weconsider
theeffectof usingsquaredratherthanabsolutecost.

6.1. Initialization

The initial bit vectorsareformedusinga randomprojec-
tion, as in the gradientdescentmethods. However, rather
thanusing the actualcorrelationswith the basisvectorsas
the componentsof the initial vectors,thesecorrelationsare
convertedto bits basedon their sign. Negative correlations
become0sandpositivecorrelationsbecome1s.Thismethod
hasthepropertythat1sand0sareexpectedequallyoften.

6.2. Minimization

The minimization phaseis conceptuallyvery simple. It
operatesby repeatedlyflipping individual bits in the N � D
matrix of bit vectors,provided that thoseflips lead to im-
mediateimprovementsin the overall cost function defined
above. Thebit that is flippedis alwaystheonethat leadsto
the greatestimmediateimprovementin the cost, hencethe
namegreedy.

TheClouseandCottrell (1996)algorithmdifferedin that
it selectedbitsat randomandthentestedto seeif flipping the
selectedbit woulddecreasethecost.This is fairly inefficient
neartheendof theminimizationprocesswheretherearevery
few bits worthflipping.

Thekey to performingtheminimizationquickly is to keep
track, at all times,of the changein overall cost that would
resultfrom flipping eachbit. This is referredto asthe bit’s
gain. A positive gain meansthe overall cost would be re-
ducedby changingthe bit. All bits with positive gainsare
storedin an implicit heap (Williams, 1964). This standard
priority queuedatastructureallows the bit with the highest
gainto beaccessedin constanttime.

Whenever the gain of a bit is changed(becauseit or an-
other bit is flipped), the heapmust be adjusted. In the-
ory this adjustmenttakes O 
 log 
 ND �,� time. However, the
O 
 log 
 ND ��� boundis very loose.Becausethegainchanges
tendto besmall,heapupdatesrarelyinvolvemorethanafew
stepsthroughtheheap.Furthermore,becauseonly bits with
positivegainsaremaintainedin theheapandthevastmajor-
ity of bits have negative gains,especiallytoward the endof
theprocess,thereareusuallyfar fewer thanND bitsactually
in the heap. Therefore,the gain updatestepis, in practice,
quitecloseto aconstant-timeoperation.

Along with thegainheap,wealsomaintainthetargetdis-
tance,ti j, andthecurrentdistance,di j, for eachpair of vec-
tors. If the actualdistanceis at least1 lessthan the target
distance,wewould like to makethetwo vectorsmorediffer-
ent. Therefore,for any dimensionk, if bits ik and jk arethe
same,the overall costwould be reducedby 1 if we flipped
eitherof thosebits. If ik and jk aredifferent,thecostwould
increaseby 1 if we flippedeitherof thosebits.

Likewise,if theactualdistanceis at least1 largerthanthe
target distance,the contribution of thesetwo vectorsto the
overallcostwill bereducedby 1 if weflip any bit thatmakes
themmoresimilar and increaseby 1 if we flip any bit that
makes them more different. If flipping a bit causesdi j to
changefrom larger thanti j to smallerthanti j, thechangein
costwill be1 � 2 
 di j � ti j � . Likewise,if di j growslargerthan
ti j with a bit flip, thechangein costis 1 � 2 
 ti j � di j � .
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Of course,the gain for flipping a particularbit for item
i is not dependenton just oneother item, j. It is summed
over all other items. Whenany bit is flipped, the gainsfor
someotherbits mustbe adjusted.Onefactorthat improves
theefficiency of theGBFalgorithmis thatwedonotneedto
updatethegainfor every otherbit. As long aswe areusing
the linear costmodel, the gain for mostother bits remains
unchanged.

If the bit ik hasjust beenflipped,we will definitelyneed
to updatethegainfor theotherbits in vectori. We will also
needto updatebit k for all of theothervectors.However, we
don’t necessarilyneedto updatethe otherbits for the other
vectors.Weonly needto dosoif � ti j � di j �.- 1, eitherbefore
or aftertheflip.

6.3. Running time

Eachof the bit updatestakesconstanttime (assuminga
constantheapupdate).Sothecostof flipping a bit is some-
wherebetweenΘ 
 N � D � and Θ 
 ND � , dependingon how
many otherbits mustbeupdated.In practice,all thebits of
a vectorareusuallyupdatedroughly1/3 of the time. How-
ever, mostof thesecasesoccurtoward the endof the mini-
mizationastheactualdistancesgrow closeto thetargetdis-
tances. Therefore,the bulk of the minimization occursin
a relatively short time and, if time werea factor, the mini-
mizationcouldbestoppedwell beforeit is completewithout
significantdegradationin theresultingvectors.

Unfortunately, as with the gradientdescentmethods,it
isn’t possibleto predictexactly how long the minimization
processwill take. In theory, therecouldbeanexponentially
large numberof flips beforethe algorithmterminates.One
could, of course,terminateearly oncea minimum gain, a
minimumnumberof bits in thegainheap,or a time limit has
beenreached.Or onecould testthe bit vectorsperiodically
and stop when significant further progressseemsunlikely.
However, in practicethealgorithmtendsto terminateon its
own in aconsistentnumberof flips, varyingby atmosta few
percentbetweentrials.

6.4. Variants

Oneconcernin performinggreedyminimization,always
flipping thebit thatprovidesthegreatestimmediategain, is
that the algorithmmay be morelikely to fall into badlocal
minima. A betteroptionmaybe to selectrandombits from
thegainheapasdid ClouseandCottrell (1996),effectively.
In practice,performingrandomoptimizationcanleadto very
slightly bettersolutionsthan greedyoptimizationon most,
but not all, tasks.However, it tendsto requireabouttwice as
many flips becausethey are,onaverage,lesseffective.

Anotherpossibility is to startwith a completelyrandom
initial configuration,rather than one producedby the ran-
dom projectiontechnique. Again, an optimizationstarting
from arandominitial configurationtendsto takeabouttwice
aslong. WhenD is large, thereis little or no differencein
performance.Interestingly, whenD is small,startingfrom a

randominitial configurationleadsto significantlybetterre-
sults on the Exemplartask but much worseresultson the
Word task.

An additionalthoughtis that,ratherthanflipping bits one
at a time, several bits could be flipped at once. This would
make the algorithmmorelike a discreteversionof the gra-
dient descentmethods,in which all vectorcomponentsare
updatedsimultaneously. Perhapsflipping severalbitsatonce
wouldaddnoisethatcouldhelppropeltheminimizationpast
localminima.

Several variantsof this idea were tested. In the first, a
randomsubsetof bits in thegainheapwereflippedsimulta-
neously. Eachbit in theheapwaschosenwith a probability
that rangedfrom 5% to 25% acrosstrials. Oncetherewere
lessthanabout10 bits in theheap,it wasnecessaryto revert
to thesingle-bitmethodor theminimizationwouldneverter-
minate.A secondvariantflippedthen bitswith highestgain,
wheren wasa specifiedfraction of the total numberof bits
with positive gain. Unfortunately, thesemethodsproduced
very similar resultsto thesingle-bitmethod,but weresome-
whatslower.

7. GBFS: THE GREEDY BIT-FLIP WITH
SQUARED COST METHOD

GNFS is identical to GBF, except that a squaredcost
function is used,as recommendedby Clouseand Cottrell
(1996). This providesa greaterpenaltyfor vectorpairsthat
arevery far from their targetdistances.Thedisadvantageof
thesquaredcostfunction is thatwe cannotassumeindepen-
dencewhenupdatingbit gains.Thus,whenabit is flippedwe
mustupdatethegainsfor all ND bits, slowing thealgorithm
considerably.

If onewishesto run thealgorithmuntil a local minimum
is reached,thismethodwill bemoreefficientthantheClouse
andCottrell (1996)techniquebecausethelattersuffersfrom
inefficiency whenfew badbits remain. However, if the al-
gorithm is to be terminatedwell short of convergence,the
ClouseandCottrell (1996)methodwill mostlikely befaster
becauseit avoidstheoverheadof maintainingthegainheap.

8. GMC: THE GREEDY MAX CUT
METHOD

Thefinal algorithm,known asthegreedymaxcut (GMC)
method,alsooperatesprimarily in bit-space. It startswith
an empty N � D matrix of bit vectorsand iteratesthrough
the columnsof bits, choosingthe value of the first bit for
eachvector, thenthe secondbit for eachvector, andso on.
Onceall of thebits have beenchosen,it iteratesthroughthe
columnsof thematrix againseveraltimes,adjustingthebits
wherenecessary.

Aside from the differencein initialization, this algorithm
canbe distinguishedfrom GBF andGBFS,and the earlier
methodof (Clouse& Cottrell, 1996), primarily in how it
identifiesbits that needto be flipped. Ratherthan select-
ing bits greedilyor at random,the GMC algorithmsystem-
atically testseachbit in the matrix. This requiressimpler
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recordkeepingthanGBF, aswe no longerneedto maintain
the gain of eachbit. Like the ClouseandCottrell method,
GMC only maintainsthecurrentHammingdistancesandtar-
getdistancesbetweenall pairsof vectors.

As in GBFS,thecostfunctionminimizedin thisalgorithm
is the sum-squareddifferencebetweenthe actualHamming
distances,di j, and the correlationdistancesof the original
vectors,scaledby D:

cost � C � ∑
i � j


 di j � ti j � 2
8.1. Filling the columns

At all times, the algorithm maintainsthe currentset of
Hammingdistancesbetweenvectorpairs.It beginswith vec-
tors of all 0s. It thencycles throughthe D columnsin the
bit-vectormatrix, filling eachcolumnsoasto minimize the
overall cost.

This is calledthe “greedymax cut” methodbecausethe
processof filling thecolumnschooseseachbit soasto greed-
ily reducethe overall costandis relatedto the well-known
MaximumCut graphpartitioningproblem.Considera com-
plete,undirectedgraphwith N vertices,correspondingto the
N items,with theweightof edgei j equalto 1 � 2 
 ti j � di j � .
The problem of finding the assignmentof bits to column
k that minimizes the squaredcost is equivalent to finding
the partitioningof the graphthat maximizesthe weight on
edgescrossingthe partition. The itemson the samesideof
the partition receive the samevalue for bit k. This is the
MaximumCut problem,which is known to beNP-complete
(Karp,1972).3

Therefore,it seemslikely thatno algorithmexists to pro-
duceanoptimalsolutionto theproblemin polynomialtime.
However, several fastapproximationalgorithmsareknown
that will producesolutionsto the Maximum Cut problem
guaranteedto be within a certainpercentageof the optimal
value. The earliestsuchapproximationalgorithmis that of
SahniandGonzales(1976),which guaranteedthat thesolu-
tion found would be at leasthalf of the optimal value. The
methodemployedhere,in its first pass,is quitesimilar to the
SahniandGonzalesalgorithm.

Whenfilling column k, the first item receivesa random
bit. Eachsubsequentitem is given the bit valuethat results
in a lower overall cost,computedover the precedingitems.
The contribution to the overall costof item i which results
from selectingthevalueik � 0 will be:

C0
ik � ∑

j � i " jk / 0

 di j � ti j � 2 � ∑

j � i " jk / 1

 di j � 1 � ti j � 2

where j iteratesover all items for which bit k hasbeen
chosen.The first summationincludesonly thoseitems for
which bit jk is 0 and the secondsummationincludesonly
thoseitemsfor whichbit jk is 1. Thus,if ik � 0, thedistance
to itemsfor which jk � 1 will increaseby one.

Similarly, thecostfor choosingik � 1 will be:

C1
ik � ∑

j � i " jk / 0

 di j � 1 � ti j � 2 � ∑

j � i " jk / 1

 di j � ti j � 2

If C0
ik - C1

ik
, ik is set to 0, otherwiseto 1. In practice,it

would be inefficient to computethoseentireexpressions.It
is betterjust to computetheir difference,which is givenby:

C0
ik
� C1

ik
� ∑

j � i

 2 jk � 1� 
 2 
 di j � ti j � � 1�

8.2. Adjusting the columns

However, this single-passassignmentof thebits in a col-
umncanonly achieve a roughapproximationto theoptimal
partitioning.It canbefurtherrefinedby iteratingthroughthe
itemsandflipping theirbitswhendoingsoresultsin lowered
cost. In this adjustmentphase,the bits are not clearedin
advanceand the cost function for item i is computedover
all otheritems,not just theprecedingitems.Thus,thevalue
of eachbit in the column is reconsideredgiven the values
of theotherbits. Subsequentadjustmentswill further refine
theassignment,but thenumberof bits thatarechangedeach
time graduallydecreases.It is usefulto performat leasttwo
of theseprimary adjustments to eachcolumnbeforefilling
thenext column.

Onceall of the columnsare filled, it is helpful to cycle
throughthemseveralmoretimes,re-adjustingthebitsin each
onewhenthecostimproves.Theseareknown assecondary
adjustments. To clarify, the primary adjustmentsoccur to
eachcolumnbeforethenext columnis filled. Thesecondary
adjustmentsoccuronceall of the columnshave beenfilled.
In evaluatingthis algorithm, 2 primary adjustmentsand 8
secondaryadjustmentswereused.

8.3. Running time

Unlike the gradientdescentor bit flipping methods,the
running time of this algorithm is easily predicted. Filling
or adjustingeachcolumnrequiresΘ 
 N2 � operations.If the
total numberof primaryandsecondaryadjustmentsis a, the
runningtimeof thealgorithmis Θ 
 N2D 
 a � 1�,� .
8.4. Variants

The obvious parametersaffecting this method are the
numberof primary and secondaryadjustments. The first
few adjustmentsresult in significantimprovement,but fur-
ther adjustmentshave greatlydiminishingreturns. Thereis
a tradeoff in balancingthenumberof primaryandsecondary
adjustments.Onecouldrely on all-primaryor all-secondary
adjustments,but performanceis betterwith someof each.
Holdingthetotalnumberof adjustmentsfixed,it is generally
bestto use2 or 3 primaryadjustmentsanda greaternumber
of secondaryones.

3 Technically, our bit assignmentproblemdoesnot exactly re-
duceto MaximumCutbecausethelatternormallyonly permitspos-
itiveedgeweights,whereasourgraphhasbothpositiveandnegative
weights.Althoughthis form of reductiondoesn’t prove thatthebit
assignmentproblemis NP-hard,it is suggestive of thedifficulty of
theproblem.
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As described,theGMC algorithmis completelydetermin-
istic. Multiple runson thesamesetof itemswill resultin ef-
fectively thesamevectors,althoughsomecolumnswill have
all of their bits reversedbecausethefirst bit in eachcolumn
wasselectedrandomly. It seemsplausiblethat this method
could tend to hit local minima becausethe bits arealways
updatedin the sameorderin the adjustmentphases.A rea-
sonablevariantwould beto adjustthecolumnsin randomly
permutedorder. However, experimentswith thisontheWord
taskfoundequivalentor slightly worseperformancethanthe
simpler, deterministicmethod.

Another possibility is to alter the order of traversal in
the secondaryadjustmentphase.Ratherthantraversingthe
columns,one might traversethe rows. This hasthe effect
of adjustinga singlepoint relative to all of the otherpoints
beforemoving the next point. In contrast,column traver-
saladjustsall pointsalongasingledimensionbeforeconsid-
ering the next dimension. Onemight expect thesetwo ad-
justmentmethodsto producedifferentresults,but in practice
they seemto resultin virtually identicalperformance.

An alternative is to selectbits for possibleadjustment
at random,as in the ClouseandCottrell (1996)algorithm.
Again, onemight expect this to betteravoid local minima.
However, equatingfor thenumberof bitstested,randomflip-
ping hasprovedto beslightly, but not much,worsethanei-
ther of the systematicupdatingmethods. Thus, in its sec-
ondaryphase,GMC doesn’t differ significantlyfrom theear-
lier method.Themostimportantdifferencebetweentheal-
gorithmsis themethodof initializing thebit matrix. Replac-
ing theprimarybit-assignmentphaseof GMC with arandom
assignmentof bits, but still equatingfor the total numberof
bits tested,resultsin significantlyworseperformance.Re-
placingit with arandomprojection,asin GBF, alsodegrades
performance,but lesssothanrandominitialization.

This algorithmcanbeeasilyadaptedto any costfunction
that hasthe form of a sum over independentcontributions
from eachitem pair. It could efficiently handlethe stress
measureif the numeratoranddenominatorwerestoredand
updatedincrementally. It wouldbemoredifficult to adaptthe
algorithmto a non-metriccostfunction. Onewould needa
fast,incrementalversionof theup-down algorithmto main-
tain theoptimalmonotonictransformationof thevectordis-
tancesas bits are flipped. When amortizedover multiple
flips, this may still be more thana constanttime operation
andwould thusaddto theasymptoticcomplexity.

Finally, as in the GBF andGBFSmethods,it is easyto
adda term to the cost function that severely penalizesdu-
plicatevectorsandthusensuresthateachitem hasa unique
representation,which is sometimesnecessary.

9. PERFORMANCE ANALYSIS

In this section,we presentcomparisonsof thesix imple-
mentedalgorithms: SVD, MGD, OGD, GBF, GBFS, and
GMC. Themethodswereappliedto theExemplarandWord
taskswith varying bit-vectordimensionalities,D, andwere
evaluatedusingthreemeasuresof theagreementbetweenthe
originalpairwisedistancesandthefinal bit-vectorHamming
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Figure 1. Goodnesson theExemplartask.

distances:goodness,metric stress,and non-metricstress.
Theaveragerunningtimesof thealgorithmswerealsomea-
suredandarereportedin Section9.4.

Three trials of eachcondition were run on a 500MHz
21264Alpha processorand the resultsaveraged.The only
exceptionswerethefew trials of SVD andGBFSthatlasted
morethan10 hours,which wereonly run once. In general,
theresultsof themethodswereall veryconsistentacrosstri-
als. The SVD andGMC algorithmsaredeterministic,and
thus achieve the sameresultsevery time. The other algo-
rithmsachievegoodnessor stressratingsthatvary about1%
betweentrials for small valuesof D andlessthan0.2%for
D ! � 100. Becauseof the small variance,limited number
of trials, andgeneralclutterof thefigures,errorbarsarenot
shown.

9.1. The exemplar task

Theaveragegoodnessratingsof thesix algorithmson the
Exemplartask, as a function of D, are shown in Figure 1.
With the exceptionof SVD, the goodnessincreasesmono-
tonically with the size of the vectors. SVD is clearly the
worstof themethods.Interestingly, in thatcasethegoodness
actuallydecreaseswith D valuesover 20. This is presum-
ably because,with largerD, theSVD methodbeginsto rely
on lessimportantsingularvectorswhich convey little useful
information.

Thereis no clearwinnerbetweenOGD andMGD. OGD
maybebetterfor lower D but worsefor higherD. Thethree
bestalgorithms,accordingto goodness,arethebit-spaceop-
timizing methods:GBF, GBFS,andGMC. GBFdoesnot do
aswell for small D. With the exceptionof D � 10, GMC
achievesthe bestgoodnessin every case,althoughthe dif-
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Figure 2. Metric stresson theExemplartask.

ferenceswith GBF andGBFSareinconsequentialfor large
D.

Themetricandnon-metricstressontheExemplartaskare
shown in Figures2 and3, respectively. SVD doessopoorly
accordingto metricstress(from 18.6for D � 10 to 0.34for
D � 200)thatit doesn’t appearon thegraph.SVD alsodoes
quite poorly accordingto non-metricstress,althoughit is
at leastcomparableto the othermethods.Interestingly, al-
thoughit did not accordingto goodness,theperformanceof
SVD monotonicallyimproveswith D accordingto thestress
measures.

MGD is mediocreaccordingto bothmeasures.OGDdoes
ratherpoorly accordingto metric stress. This shouldnot
be too surprisingsinceOGD is only optimizing non-metric
stressandits resultingpairwisedistancesareunlikely to di-
rectly matchthetargetdistances.However, OGD is still not
asgoodasthebit-spacemethodsevenon non-metricstress.
GBFSandGMC arefairly indistinguishableaccordingto ei-
thermeasure,although,with theexceptionof D � 10,GMC
is slightly betterin all cases.GBFis worsethantheothertwo
for D � 10,but is nearlyasgoodathigherdimensionality.

9.2. The word task

TheWord taskhasamuchmorecomplex similarity struc-
turethantheartificial Exemplartask,andthusmayprovidea
bettermeasureof theability of theBMDS methodson other
scalingproblemsinvolvingnaturaldata.Becauseit has5,000
itemsandtheoriginal vectorshave 4,000dimensionsrather
1,000,theWord taskis computationallyharderaswell. The
goodnessmeasureis shown in Figure4 andthe stressmea-
suresaredepictedin Figures5 and6.
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Figure 3. Non-metricstresson theExemplartask.
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Figure 4. Goodnesson theWord task.

Onceagain,SVD doesquite poorly. It makes little im-
provementin goodnesswith higherdimensionality. It is off
of the metric stressscale,except for the caseof D � 200,
andits non-metricstressis muchworsethanthatof theother
measures.Again,however, it doesmakesteadyimprovement
with higherD accordingto the stressmeasures,but not ac-
cordingto goodness.

OGD is the clear winner on the goodnessscale,espe-
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Figure 5. Metric stresson theWord task.
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Figure 6. Non-metricstresson theWord task.

cially for smallD. This is surprisingsinceit performedquite
poorly on the Exemplar task. According to metric stress,
OGD againdoesn’t do very well, but it is the bestmeasure
by non-metricstressfor D - � 50. Nevertheless,basedon
non-metricstress,it is not clearly dominantover the other
measuresas it is on the goodnessscale. The next section
addressesthis apparentdisparitybetweengoodnessandthe
stressmeasures.

As measuredby goodness,MGD doesquite well but is
not closeto the performanceof OGD. According to stress,
MGD is just average. GMC andGBFS have quite similar
performance,but GMC is consistentlya little bit betteronall
threemeasuresatall valuesof D. GBF is reasonablygoodat
high valuesof D, but its performanceon all measuresdrops
off with smallD.

9.3. Stress vs. goodness

It is interestingthat the stressandgoodnessmeasuresdo
not alwaysagree.At times,onemethodwill performbetter
thananotheraccordingto goodnessbut worseaccordingto
stress. For example,on the Word task with 50 bits, OGD
achievesanaveragegoodnessof 0.843while theGMC vec-
torsonly havea goodnessof 0.741.However, theGMC vec-
tors have a metric stressof 0.109,which is betterthan the
0.133of the OGD vectors. Accordingto non-metricstress,
GMC andOGD arevery similar (0.104vs. 0.102).Because
themeasuresdon’t alwaysagree,it is importantto choosean
evaluationmeasurethat is appropriatefor a given task. So
let’sbriefly comparethepropertiesof thesemeasures.

We begin by trying to understandwhat aspectsof the
GMC andOGD solutionsmight have leadto the disagree-
mentamongevaluationmeasures.Onecommonway to vi-
suallyevaluateMDS resultsis throughtheuseof a Shepard
diagram. This is a scatterplot with onepoint for every pair
of items.Thehorizontalaxisrepresentsthedistancebetween
the original pair of vectors,or subjects’similarity ratingsif
that is thestartingpoint. Theverticalaxisrepresentstheac-
tual distancebetweenthevectorsin thereducedspace.Ide-
ally, thepointsshouldfall on theidentity line.

However, becausethe Word taskinvolves5,000items,a
standardShepardplot would contain12.5million points.So
many pointsarehardto handleandestimatingtheir density
is difficult. Therefore,amodifiedversionof aShepardplot is
usedherewhichis somethinglikea2D histogram.Thegraph
is partitionedinto a grid of cells and the numberof points
falling into eachcell is counted.Thenthe columnsof cells
arenormalizedso that the valuesin eachcolumnsumto 1.
Eachcell is thenplottedasacirclewhoseareais proportional
to the normalizedcell value. The ideal graphwill be linear
andhave little verticalspread.These“Shepard-histograms”
for onerun of the GMC andOGD algorithmsareshown in
Figures7 and8.

It should be noted that this method of normalizing
columnsof cells disguisesthe fact that the vastmajority of
pairshave target distancescloseto 25, indicatingthat their
original vectorswereuncorrelated.Therefore,mostof the
datapointsin thegraphactuallyfall in thismiddlerange.This
canbeseenby performingthenormalizationacrossall cells,
not just alongthe individual columns.Figure9 displaysthe
samedataasFigure8,but with normalizationacrossall cells.
The cells representingvery small or large correlationdis-
tancesarebarelyvisiblebecausethey containsofew points.

Figure7 shows that theGMC algorithmfindsa fairly lin-
earsolution. However, thesolutionappearsto have a nega-
tive zero-crossingandis somewhat warpedfor small target
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Figure 7. Distribution of pairwisebit vectorHammingdistances
versusoriginaldistancesfor a runof theGMC methodon theWord
taskwith 50bits. Cellsarenormalizedby columns.
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Figure 8. Distribution of pairwisebit vectorHammingdistances
versusoriginaldistancesfor a runof theOGDmethodon theWord
taskwith 50bits. Cellsarenormalizedby columns.
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Figure 9. Thesamedataasin Figure8 normalizedacrossall cells,
ratherthanby columns.

distances.Thus, vectorsthat were originally quite similar
tendto be evenmoresimilar in the bit-space.Thereis also
greatervariancefor thecolumnsontheleft, althoughthispar-
tially resultsfrom thefactthatthey containvery few points.

The plot of the OGD solution in Figure 8 is noticeably
lesslinear, having amorepronouncedsigmoidalshape.Like
the GMC solution, small distancestend to be too-small in
the final space.However, in this case,large distancestend
to beexaggeratedaswell. This partially explainswhy OGD
doesbetteraccordingto goodness,or correlation,worseac-
cordingto metricstressandalmostequivalentlyaccordingto
non-metricstress.

Non-metricstressis essentiallyindicative of thevariance
of thecolumnsin theSheparddiagram,but is insensitive to
themeanvaluein eachcolumn.In thiscase,thetwo methods
have fairly similar variance,resultingin similar non-metric
stress.Metric stress,on theotherhand,measuresthedispar-
ity betweenthepointsandtheidentity function. Any devia-
tion from thisline,whetherfor largeorsmalltargetdistances,
contributesequallyto thestress.Metric stressis sensitive to
bothnoiseandmonotonicdistortions,thelatterhaving a rel-
atively strongeffect. Thus,the OGD solutionhasa higher
metricstress.

Thecorrelationmeasureis a bit harderto characterizean-
alytically. But somesimpleempirical testsinvolving a few
artificial datasetsshow that correlationis actually fairly in-
sensitive to monotonicdistortions. First, a set of random
numbersevenlydistributedbetween0 and1 weregenerated.
A secondsetof numberswasproducedby transformingeach
valuein thefirst setandthecorrelationandstressof thenum-
berpairswasmeasured.
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Monotonicdistortionshave a greatereffect on stress. If
thesecondsetis composedof thesquarerootsof thefirst set,
thereis little effect on thecorrelation,which is 0.98,but the
stressrisesto 0.098. If cuberootsareused,the correlation
is still fairly high,0.959,but thestressis 0.229.Finally, if a
sigmoidcenteredaround0.5with againof 2 is appliedto the
numbersto createanS-shapedtransformationasin Figure8,
thestressis moderate,0.067,but the correlationis virtually
unchangedat 0.9998.

In contrast,addingnoiseto the valueshasa largereffect
on correlationthanon stress. If 0.15 is either addedto or
subtractedfrom eachvaluewith equalchance,the correla-
tion dropsto 0.887but thestressis again0.067.Thus,in this
caseof noise,thestressis equalto or lower thanit waswith
the monotonictransformations,but the correlationis much
worse.Theimplicationof this is thatthecorrelationmeasure
is fairly ordinalin its behavior. Indeed,measuringthecorre-
lationontheexampletasksusingmonotonicallytransformed
targets,d̂i j, ratherthantheactualtargets,ti j , generallyresults
in only aslight improvement.

9.4. Running time

Finally, we turn to the issueof the running time of the
variousalgorithms.Regardlessof how goodtheresultsmay
be, an algorithm is only useful if it cansolve a given task
in an acceptabletime frame. The running times of SVD
andGMC are fairly easyto analyzebecausethey’re deter-
ministic. The methodusedhere to computethe SVD is
Θ 
 N2 
 N � M � � ND � . TheND termis for assigningthebits
andis inconsequential.If M - N, thematrix is inverted,re-
sultingin a Θ 
 M2 
 M � N �,� algorithm.

The other algorithmsrequire that all pairwisedistances
betweenthevectorsarecomputed,which is a Θ 
 N2M � pro-
cess.However, becausethatstepis commonto all of them,it
wasdonein advanceandthedistancesstored.It is therefore
not shown in themeasuredrunningtimes. It is worth noting
that,althoughthey arebothΘ 
 N2M � , computingthe vector
distancesis muchquicker thancomputingthe SVD dueto
themuchimprovedconstant.

Following the distancecomputation,the GMC algorithm
is Θ 
 N2D � , assumingthe numberof adjustmentsis treated
as a constant. The gradientdescentand bit-flipping algo-
rithms,on theotherhand,aredifficult to analyzebecauseit
isn’t clearwhenthey will terminate.They aresuspectedto
beroughlyΘ 
 N2D � , however, andweturnto someempirical
measuresto verify this.

Figures10 and11 show the scaledrunning timesof the
methodsasa functionof D on theExemplarandWord tasks.
Becausethe timeswereexpectedto be roughly linear in D,
they wereall dividedby D in producingthegraph.Therefore,
aflat line indicatesatruly linearalgorithm.SVD,becauseits
runningtime is essentiallyconstant,hasdecreasingcurvesin
bothgraphs.SVD wassoslow on the Word task,however,
thatit only appearson thegraphfor D � 200.

MGD and OGD seemto be fairly linear in D. Both of
themarea bit slower for verysmallD on theExemplartask.
Possiblythis is becausethey haddifficulty settlingonagood
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Figure 10. Runningtime asa functionof D on theExemplartask
(scaledby 10 D).

solutionwith sofew bits. OGD wassignificantlyquickeron
the Word task,but slower on the Exemplartask. The GBF
methodappearsto besomewhatworsethanlinear, its curves
noticeablyrising on theright side.GBFS,on theotherhand,
is essentiallyquadraticin D.

The algorithm that is consistentlyfastest,other than the
ineffectiveSVDmethod,isGMC.OntheWordtaskwith 200
bits pervector, GMC is almostthreeanda half timesfaster
thanthenext fastestmethod,GBF. AlthoughGMC is known
to be truly linear in D, its scaledrunningtimesactuallyde-
creasewith larger D. This reflectsthe fact that lower-order
terms,suchastheN2 costof loadingthepairwisedistances,
havea relatively diminishingeffecton theoverall time. This
indicatesthat the other methodsthat appearedto be linear
dueto flat linesmayactuallybeslightly worse.

Figure 12 depictsthe running times of the methodsfor
varying numbersof items, N, on the Word task. In this
case,the running timeshave beendivided by N2. GMC is
known to be quadraticin N. Therefore,the slight rise in
its line is eitherdueto lower-ordertermsor cachingineffi-
cienciesresultingfrom the increasedmemoryrequirements
of the larger problems. GBF has a similar profile and is
thusnearlyquadraticin N aswell. GBFSandMGD, on the
otherhand,areclearlyworsethanN2. OGD maybeslightly
worsethanquadratic,but it’snotclear. SVD rangedfrom 4.3
timesslower thanMGD for N � 500to 9.5 timesslower for
N � 5000.
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Figure 11. Runningtime as a function of D on the Word task
(scaledby 10 D).

10. DISCUSSION

Althoughmultidimensionalscalingtechniqueshave been
studiedfor overhalf acentury, binarymultidimensionalscal-
ing, which wasinspiredby the needto develop representa-
tionsusablein trainingneuralnetworks, is a relatively new,
yet intriguing,problem.This studyhasintroducedandeval-
uatedseveralalgorithmsfor performingbinarymultidimen-
sionalscaling.It is hopedthat thebettermethodswill prove
usefulto researchersin theircurrentformsandthattheinclu-
sion of the lesseffective methodsin this reportwill help to
directfutureattemptsto improveon thesetechniques.

10.1. SVD

Althoughit is sousefulin othertypesof scalingproblems,
the SVD methodis simply not a goodchoicefor BMDS. It
consistentlyachieved the worst performance.For the Word
task,this cameat thegreatestcost,in termsof runningtime.
Although it is possiblethat improved discretizationmeth-
odscouldachievebetterBMDS performanceusingtheSVD,
there is still the issueof the running time. Unlesseither
thenumberor dimensionalityof theoriginal vectorsis quite
small,simplycomputingtheSVD is prohibitivelyexpensive.

10.2. MGD and OGD

Thegradientdescentmethods,whicharethemostclosely
relatedto techniquescurrentlyin usein standardMDS,show
somepromisefor BMDS. They have theadvantagethatthey
canbeusedwith any differentiablecostfunction,andarethus
extremelyflexible. Althoughthey wereslowerthanGBFand
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Figure 12. Runningtime as a function of N on the Word task
(scaledby 10 N2).

GMC onthesetasks,mostof theimprovementin theirresults
occursearly in the gradientdescentandthe processcanbe
cutshortwith relatively little effecton performance.

On theExemplartask,OGD andMGD werenot asgood
asthebit-spacemethodsby any measure.However, they per-
formedvery well accordingto thegoodnessmeasureon the
Word task,especiallyOGD. OGD wasalsothebestaccord-
ing to non-metricstressfor small D on the Word task. Un-
lessoneis concernedwith usinganon-metricmethod,OGD
seemsto bea betterchoicethanMGD. It generallyachieves
superiorperformanceandalsoconvergesmorequickly. This
is partially dueto the fact that it is non-metricandpartially
dueto theuseof sigmoidally-transformedvaluesin comput-
ing thevectordistances.It is true,however, thattime to con-
vergenceof MGD couldbereducedwith theuseof a polar-
izing costfunction.

Innumerablevariantsof thesemethodsarepossibleandit
is likely they couldbothbeimprovedwith furtherwork.

10.3. GBF and GBFS

The GBFSmethodis essentiallythe oneusedby Clouse
andCottrell (1996),althoughthecurrentimplementationbe-
gins with a randomprojectionand is operatedin a greedy
fashionrather than by flipping randombits with positive
gain. GBFSconsistentlyproducesvery goodsolutions.Un-
fortunately, it suffers from being quadraticin D and more
thanquadraticin N.

Becauseit usesa linearcostfunction,theGBF methodis
ableto cut cornersandrun muchmorequickly, with only a
modestloss in performanceon the Exemplartask. On the
Word task,GBFdoesnot doaswell, andhasparticulartrou-
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blewith smallD. Nevertheless,bothGBFandGBFSappear
to be strictly worsethanGMC, in termsof runningtime as
well asperformance.Although the speedof both methods
couldbeimprovedby terminatingtheoptimizationearly, this
wouldonly hurtperformance.

10.4. GMC

TheGMC algorithmseemsto becurrentlythebestover-
all choicefor BMDS. It is the fastestof the algorithmsand
producesthebestor nearlythebestresultsaccordingto the
stressmeasuresandalsoachieved the bestgoodnessscores
on the exemplartask. But it shouldbe notedthatOGD did
achieve bettergoodnessratingson the Word task,andthus
may be preferablein caseswherenon-metricsolutionsare
acceptableandthesimilarity structureis relatively complex.

TheGMC algorithmhasanumberof otheradvantages.Its
runningtime is well understood.Unlike thegradientdescent
andbit flipping methods,GMC runsfor aconsistentandpre-
dictableamountof time. As with GBFandGBFS,but unlike
thegradientdescentmethods,GMC canbemodifiedto pro-
duceonly uniquevectorsby simplyaddinga termto thecost
function.Thismaybearequirementfor someapplicationsof
BMDS. For example,it couldbeproblematicif two different
wordsareassignedexactly thesamemeaning.

GMC canalso be usedwith a variety of cost functions,
althoughit is not quite as flexible as the gradientdescent
methodsin this regardbecausethe costmustbe incremen-
tally calculable. Finally, GMC is very easyto implement.
Unlike the gradientdescentmethods,thereareno learning
ratesor otherparametersto adjust,nor complex derivatives
to compute.Unlike thebit flipping methods,thealgorithmis
simpleandstraightforwardwith minimal recordkeeping.

10.5. Conclusion

With the exceptionof SVD andpossiblyGBFS, the bi-
nary multidimensionalscalingmethodspresentedhereare
capableof handlingproblemsof reasonablyhighcomplexity.
However, evenGMC, with a runningtimeof Θ 
 N2 
 M � D �,�
will not scaleup well to problemswith hundredsof thou-
sandsof itemsor dimensions.To solve suchlargeproblems,
moreefficient, thoughperhapslesseffective,techniqueswill
beneeded.Onepossibility is to usea limited setof R refer-
enceitems. All itemsarepositionedrelative to thosein the
referenceset,but not necessarilyrelative to oneanother. If
thedimensionalityof thefinal spaceis not too large,theref-
erencevectorsmaysufficiently constrainthepositionsof the
otheritemsrelative to oneanotherto producea goodoverall
solution.Variantsof this ideaarepossiblewith all of theal-
gorithmspresentedhere,althoughnotalwaysconjointlywith
theuniquenessconstraintofferedby thebit-spacemethods.

Codefor any of thesemethodscanbe obtainedby con-
tactingtheauthor.
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