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Abstract
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1 Intr oduction

A commongoalin the field of machinelearningis the developmentof modelsthatareableto capturethe structure
of alanguagebpeit a natural,humanlanguageor somethingmore abstract. For example,one might wish to learn
therulesof grammaticalityor usethelanguagdo comprehenéndproducemessagesAlthoughit is oftendesirable
to work directly with a completenaturallanguagejn studyingthe behaior of a particularlearningmethodor in
comparingmultiple strat@iesit is sometimesiecessaryo have at our disposallanguagesvith well-understoocgind
easilycontrolledproperties.

To producesucha language we typically rely on a grammarwhich definesthe legal strings, or sentencesit
contains A geneativegrammaiis onethatcanproducehosesentencesiith mostreasonabléanguagest is usually
not very difficult to write a programto generatehe language.However, oneof the goalsof mary researchers to
train a neuralnetwork,hiddenmarkos model,or otherlearningmethodto predicteachword in asentenceln orderto
evaluatesuchamodel,we would needthetheoreticallycorrectpredictions Althoughtherearemary waysto generate
alanguagemostof themdo not enablethe rapid calculationof word-by-wordpredictionshasedn thegrammar

A simpleyet fairly powerful form of grammaris the contet-free grammay or CFG (seeHopcroft & Ullman,
1979, for anintroduction). By specifyingprobabilitiesthat eachpossibleproduction or transition,in the grammar
is performed,we can control the distribution of sentenceproducedby a CFG. Thuswe form a type of generatie
grammarknown asa stochasticontect-free grammar or SCFG.The adwantageof the SCFGis thatit hasbeenthe
subjectof considerablenalysisandwe have reasonablyastalgorithmsfor parsingandproducingword predictions
usingSCFGs.

Unfortunatelyif oneis interestedn designingcomplex language$y hand,the SCFGcanberathercumbersome.
In orderto producea languageof significantcompleity, where compleity is usedin a non-technicakense the
requiredgrammarbecomedong andcomplicated jnvolving considerableedundang anda hostof symbols,which
often have ratherabstractrelationshipgo the final language.In the SCFG,probabilitiesmustbe specifiedfor each
productionin the grammay but reasonablgrobabilitiesare difficult to determineby handif the symbolsinvolved
do not have clearmappinggo well-understoogropertiesf the intendedanguage Therefore designinginteresting
SCFGgrammardy handbecomeguiteimpossible.

Thegoalof SLG or theSimpleLanguagé&senerataris to allow a humanto specifyrelatively conciseandintuitive
grammaravhich neverthelesslefineinterestinganguagesThe grammaiinterpretedby SL G is similarin basicform
to anSCFG,but it allows the designetto specifyadditionalconstraintghat alter the resultinglanguage.The ability
to reuseconstraintshelpsto eliminateredundang. SLG canthenconvert the users grammarto a standardSCFG.
This processs known asresolvingthe grammar Oncewe have obtainedan SCFGwhichis equialentto the original
grammaralbeitmuchlongerandmorecomple, we caneasilygeneratesentences thelanguageor produceoptimal
word predictions.

Thisreportexplainstheuseof SL G andsomeof its innerworkings.Section2 describeshe grammaispecification
language Section3 explainsthe processy which constraintareresohed. Sectiond explainsthe processf reducing
or minimizing the size of grammars.Section5 describeghe methodof corverting grammargo GreibachNormal
Form andhow this is usedto produceword predictions. Section6 mentionssomepossiblefuture extensionsto the
programandprovidestheaddresgor downloadingSL G. Finally, AppendixA explainsthe command-lineaguments
usedto controlSLG.

2 Thegrammar

The grammarinterpretedby SLG? is a supersebf a standardSCFGgrammar Therefore ary ordinary SCFG,and
henceary finite statemachine canbe handledn a straightforwardmanner Onecanview the procesf generatinga
sentencavith an SCFGasthe branchingof aninvertedtree. Eachnon-terminakymbolbranchesnto the symbolsin
its chosemroduction.Thegrammaiis contect-freebecaus¢hebranchingf eachsymboldepend®nly onthesymbol
itself andis unafectedby context, or thesymbolsaroundit. While CFGsarea corvenientwayto capturghesyntaxof
mary languagesandhave thusattractedheattentionof linguists,if we areconcerneavith thefrequeng of sentences,
we mustconsiderthe semanticsand pragmaticf naturallanguageswhich play animportantrole in the choiceof
productions.However, it is not possibleto introducethis type of informationinto an SCFGwithout restructuringt,
whichwould destroythe nice,simplemodelof syntax.

1Thisreportis basedn SL G version2.0.



Whatwe would like to be ableto do is to constrainthe behaior of onesymbolgiventhe productionsof one,or
more,othersymbolsn thetree.For example whenproducingnaturalsentencesye mightwantto constrairthechoice
of verbbasedhe choiceof subjector the choiceof adjectve basedn thenounit is describing Givena grammarand
alist of suchconstraintsit is possible althoughnot entirely straightforwardfo generatesentencethat satisfyboth
thegrammartandtheconstraintsaslong asthedependenciearent circular However, givensuchamodel,it wouldbe
next to impossibleto efficiently parseandgeneratevord predictions.To do that,we wouldreally like just a standard
SCFG.But aslong asthe region of the tree affectedby eachconstraintis containedwe shouldbe ableto eliminate
the needfor the constraintdy restructuringust thoseportionsof the grammarso that the constraintis effectively
embeddedh the context-free productionsThisis therole of SLG.

Defining an SLG constraintinvolvestwo steps. First, a constraintfunction is definedwhich specifieshow the
choiceof productiondrom the constrainingsymbol,or thesource, affect the choiceof productionsof the constrained
symbol,or thegoal. Thenthe constraintmustbe appliedto eachappropriatgair of sourceandgoal. Thisis doneby
specifyingwhich sub-treeor sub-treesareaffectedby the constraint. The sub-treebegins at the root, or the symbol
whichis thelowestmutual-ancestoof the sourceandgoal. Typically, noun-phraseandverb-phraseappeain mary
placesin a naturallanguagegrammar The ability to reusea single subject-erb constraintfunction for eachpair
helpseliminateredundang andsegregatesemantic/pragmatioformationfrom syntacticdnformationin thegrammar
Becauseesolvinga constrainionly involvesalteringthe pathsthroughthe treethatstartat the root andextendto the
sourceor goal,theuseof constraintgloesnot renderthe SL G grammarsupercontet-freein thetheoreticakense.

2.1 Usingthe SL G grammar

S : NPVP". " |
{Legal IntVerb, NP N, VP VI} |
{Legal TrnVerb, NP N, VP VT};
VP : VI | VT OP (0.7) |

5 {Legal Ohj ect, VI, OP N |
{Legal Ohj ect, VT, OP N2};
NP : the N;

OP: the N| the Nand the N2 |
{Dont Repeat Obj, N, N2};
10 N|] N2 : boy (0.3) | cat (0.3) | dog;
VI : barked | slept;
VT : bit | fed;

Legal I nt Verb {
15 boy | cat : slept;
dog . barked (0.8) | slept;
}

Legal TrnVerb {
20 dog | cat ! fed;

Legal bj ect {
bit | fed : boy (0.6) | cat (0.2) | dog;
25 fed I boy;
}

Dont Repeat oj {

boy ! boy;
30 cat ! cat;
dog ! dog;

Figurel: A grammarfor producingsimplesentences.

Figure 1 containsa sampleSLG grammar illustrating the syntaxand mary of the available features. The first 12
lines containsymboldefinitions. A symboldefinition begins with alist of the symbolsto be defined,separatedy |
characterslt is corvenientto readthe| charactemas“or”. A symbolnamecanconsistof ary string of characters
excluding white spaceandthe following specialcharacters; | : , {}()! Alternately a symbolnamecanbe ary
stringenclosedn doublequotes.This allows multi-word symbolsandsymbolsusingthe specialcharactersThefirst
symboldefinedoecomeghe startsymbol.

Eachof the symbolsin the definitionlist will receve the samedefinition. Thatis, they will have the samesetof



productionsandwill betheroot symbolfor the samesetsof constraints.It may not seemparticularlyusefulto have
equivalentsymbols,but it oftencomesin handywhenoneneedso apply differentconstraintgo otherwiseidentical
symbols,andit cansometimeselp makethe grammamoreclear An exampleof a shareddefinitionis thatof “N |
N2” on line 10 of thegrammar Becauseve createdwo differentnounsnon-terminalswe candistinguishbetween
themin theconstrainonline 9.

Following the definition list is a colon andthen a list of productionsand constaints, separatedy | 's. The
definitionis terminatedwvith a semicolon.A productionis a string of symbols(separatethy whitespacejollowedby
anoptionalprobability (proh) enclosedn parenthesesThe probabilitiesfor all possibleproductiongrom a symbol
mustsumto 1.0. Any productionsvhoseproh is notspecifiedwill be giventhe sameproh, whichis calculatedsuch
thatthe overall sumbecomed .0. Therefore,f threeproductionsaredefinedanda proh of 0.6 is specifiedfor the
firstandno proh is specifiedfor the others the otherproductionswill defaultto 0.2.

Constraint@reenclosedn curly bracesandconsistof threeparts. Thefirst specifiegheconstrainfunction,which
mustbedefinedseparatelyThesecondpecifiedhesouicepathandthethird specifieshegoal path. Whenasentence
is generatedvith a CFG,we canview theprocessasthebranchingof atree,beginningwith thestartsymbol,whichis
S in this case.Figure?2 illustratesthe parsetreefor a sentencgeneratedby the examplegrammar

Figure2: Parsetreefrom thegrammamvith a sourcepathshovn in white anda goalpathshavn in black.

When a constraintis givenin a symboldefinition, the symbol currently being definedis called the root of the
constraint.For example,theroot of the constrainton line 9 is OP. Notethatthe root of a constraintneednot be the
startsymbolof thegrammar A constraintpathconsistf a seriesof symbolsseparatedby whitespacelt matchesa
paththroughthe statesn the parsetreewhich begins atthe root symbol. Eachof the symbolsin the pathmustmatch
asymbolin the parsetreeatthenext level down. If eitherthe sourcepathor thegoal pathdoesnot matcha pathin the
tree,theconstraindoesnotapply.

In thecaseof thetreein Figure2, the constraint' {LegalTrnVerb, NP N, VP VT}”, whichhasroot S, is applicable.
The sourcepathis markedwith white ovals andthe goal pathwith blackovals. Thelastsymbolin the sourcepathis
calledthe source becausét will bethe sourceof the constraint.In this case the sourceis N. Thelastsymbolin the
goalpath,VT, is calledthegoal. A constraints only valid if thefirst symbolon the sourcepathis differentfrom the
first symbolon the goal pathandthe two symbolsappeattogetherin atleastoneroot production. Additionally, the
root symbolitself maynot appeaionthe sourceor goal pathsexceptasthefirst symbol.

The choiceof productionout of the source,or the productionthat the sourcesymbol performs,will constrain
the choiceof productionout of the goal. It doesthis usingthe specifiedconstraintfunction, which mustbe defined
separately A function definition consistsof the nameof the function followed by a list of termsenclosedn curly
braces.Eachtermbeginswith alist of productionscalledthe sourcelist. Thesemustbe valid productionsout of the
source,asgiven by the definition of the sourcesymbol. Note that the elementsn this list are productions not just
symbolnames.in thecurrentexample,all of theseproductionshapperto consistof a singlesymbol,but in generalt
is possiblefor constraintdo involve morecomplex productionscomprisinga seriesof symbols.Following thesource
list is eithera colonor exclamationpoint andthenthe goal list, whichis alist of possibleproductionsout of the goal
symbol.

If the characteseparatindhe sourceandgoallists is an exclamationpoint, ratherthana colon,thenthe goallist
specifieproductionsvhich cannotbetakenfrom thegoalsymbolif thesourcesymbolproduce®neof theproductions
in thesourcdist. Thisis a corvenientway to eliminateselectecgroductions For example,the LegalTrnVerb function



saysthatif the subjectis dog or cat thenthetransitve verb cannotbefed. Probabilitiesshouldnot be specifiedwhen
usinganexclamationpoint.

On the otherhand,if the characteseparatinghe sourceandgoallists is a colon, the goal list specifieshe only
legal productiondrom the goal symbolif the constrainterm applies.In addition,probabilitiescanbe specifiedfor
the goallist productionghatwill modify the distribution of productiongproducedy the goal. The new distribution
doesnotreplacetheold one.Ratherit filtersthe distribution. Whenonedistributionfilters anotherthe corresponding
termsaremultiplied andthe resultsre-normalized.For example,symbolN normally producesoy, cat, or dog with
respectre probabilitiesof 0.3, 0.3, and0.4. Whenfilteredby thefirsttermin theLegalObject function,which specifies
adistribution of 0.6, 0.2, 0.2, the resultingdistribution becomed).5625, 0.1875, 0.25. Notethatif a productionhas
proh 0.0 in eitherdistribution, it will have proh 0.0 in theresult.If no probabilitiesarespecifiedn thegoallist, the
constraintwill eliminategoal productionghatare not listed but will not changethe relative likelihood of the listed
productions.

Althoughit is usualfor eachsourceproductiorto appeain atmostonetermin aconstrainfunction,it is sometimes
usefulto definemultiple termsfor a production.For example,you might have oneterm thatrepresentanimalsand
onethatrepresentfiercethings,bothof which includedog. If a sourceproductionmatchesnorethanonetermthen
thegoalproductionsarefiltered by eachof the matchingterms.The orderin which filtering occursdoesnot matter

Let us examinethe constraintemployedin the examplegrammar LegallntVerb is usedto constrainthe choices
of intransitive verbsgiventhe subjectof the sentence Note thatthe constrainingpathin this constraint NP N, will
alwaysbe matchedecausans mustproduceanNP andanNP mustproduceanN. Theconstraineghath,vVP VI, may
not be matchedbecause verb phrasemay containatransitive verb ratherthananintransitive one. If the constrained
pathdoesmatch,thenthis constraintwill affect the choicesof intransitive verb basedon the choiceof nounfor the
subject.

Thedefinitionof the LegallntVerb functionspecifieghatif the subjectis boy or cat thentheintransitive verbmust
beslept. However, if the subjectis dog, thentheintransitive verbwill bebarked with proh 0.8 andslept with proh
0.2. TheLegalTrnVerb functionis usedto constrainthe possibletransitive verbsgiven the subject. If the subjectis
eitherdog or cat, thetransitive verb cannotbefed. Thereforejt mustbebit. Notethatboy is notlistedin ary of the
termsin the definitionof LegalTrnVerb. Thereforejf the subjectis boy, the constrainthasno effect andthe transitive
verbwill bebit or fed with equallikelihood.

The LegalObject functionis usedto constrainthe choicesof objectgiventhetransitve verh Thefirst term says
thatif theverbis bit or fed, all nounsarepossibleput their probabilitieshave beenaltered.The seconderm,however,
specifieghatif the verbis fed, the objectcannotbe boy. In this casethe proh of the objectbecomingcat will be
3/7 andtheproh of dog will be4/7. Finally, the DontRepeatObj constraintliminatesthe possibilityof acompound
objectconsistingof the samenountwice, suchas". .. the dog and the dog”.

Theamountor type of whitespacaloesnot matterin the SL Ggrammairfile, exceptthatary line startingwith a #
will betreatedasacomment.

2.2 Other features

Onefeaturethathasnot yet beenmentioneds the useof constraintwild-cards. The symbolnamesn thesourceand
goalpathof a constraintmaybereplacedwith a*. Thiswill matchary symbolandallows a singleconstrainto apply
to several paths.Whenresolvingthegrammartheconstrainwill actuallybeturnedinto a setof constraintsn which
thewild cardshave beenreplacedy all possiblecombinationf symbolvalues.

Anotherusefulfeatureis theepsilonproduction.A standarcconceptin CFGs,theseareproductionghatgenerate
nothingandthus eliminatethe currentsymbolfrom the tree. While thesedo not alter the theoreticalpower of the
grammayr their use can simplify grammars. Considerthe two examplesshowvn in Figure 3. Theseare equivalent
grammarghat producea noun-phraseontainingan optionalarticle andoptionaladjectie beforethe noun. Thefirst
grammardoesnot useepsilonproductionsand thereforemust specify all four possibletypesof noun-phrase.The
secondgrammarusesepsilonproductionswhich arewritten asan empty pair of double-quotesto makethe article
andadjective optionalwhile freeingthe userfrom enumeratingvery possibility.

Finally, constraintsnaybegivena priority which determineshe orderin whichthey will beresohed. By default,
if thereare no other dependencies;onstraintsare handledin somearbitrary order when resolvingthe grammar
However, sometimegheresolutionprocesgyoesfasterif certainconstraintareresolhedbeforeothers. Theusercan
influencethe orderof resolutionby giving constraints priority. By default,constraint$ave priority 0, but thepriority
canbechangedy placingafourthfield in the constraintspecificationasin {foo, NP N, VP VT, 3}. Thepriority may



NP : N| ART N| ADJ N| ART ADJ N,
ART: the | a;
ADJ: green | putrid;

NP : ART ADJ N,
ART: "" | the | a;
ADJ: "" | green | putrid,;

Figure3: Usingepsilonproductiondo simplify agrammar

be nggative. Higher priority constraintswill beresohedfirst. For mostgrammarsthis will have no noticeableeffect
andis mostusefulif you would like to obsene the intermediatestagesof the resolutionprocesaundera particular
constrainordering.

2.3 Limited cross-dependency

A main attractionto CFGs has beentheir ability to corveniently capturecenterembeddingwhich is a common
featureof EnglishandmostotherlanguagesA nestedcenterembeddedentencenighthave the generaktructureN1
N2 N3 V3 V2 V1, whereV1 depend®n N1, V2 on N2, andso on. Theseareeasilycapturedoy CFGs. However, of
considerablénterestandtroubleto the linguistic communityhasbeenthe existenceof a few languagesmostnotably
Dutch and SwissGerman thatpermitcross-dependenci¢€hristianser& Chaterin press)which have the general
structureN1 N2 N3 V1 V2 V3. Thesecannotin generabedescribedy a CFGand,evenif thedepthof theembedding
is limited, aredifficult to describeonceagreemenandsemanticonstraintareintroduced.

S: N1 N2 N3 V1 V2 V3 |

{N-V, NI, V1} | {NV, N2, V2} | {NV, N3, V3};
Nl : dog | dogs | cat | cats;
N2 | N3: dog | dogs | cat | cats | "" (0.8);
Vli| V2| V3 : barks | bark | purrs | purr | ""

N-V {dog: barks; dogs: bark; cat:purrs; cats:purr; "":"";}

SS NNPV V]| {NV, N V} |
{NP-VP, NP, VP} | {N-V, NP N VP V}
{NP-VP, NP NP, VP VP} | {NV, NP NP N, VP VP V};
N: dog | dogs | cat | cats;
V: barks | bark | purrs | purr;
NP: NNP| "" (0.8);
VP: V VP | "
N-V {dog: barks; dogs: bark; cat:purrs; cats:purr;}
NP-VP {"":""; N NP:V VP;}

Figure4: Two SL G grammardor limited cross-dependenc

However, cross-dependencied limited deptharenottoo difficult to describeusingan SLG grammar Figure4
shavstwo waysin which, in rathersimplifiedform, onemightwrite suchagrammar Thefirstusesaflat representation
to explicitly allow up to threepossiblepairs. Threeconstraintsare requiredto implementagreement.The use of
the epsilonproductionallows N2 andN3 to be optional, andthe constraintgrevent the corresponding/erbsfrom
appearindn theabsencef the nouns.Whenresohedinto an SCFG this grammarequires25 non-terminakymbols
and124productions.

Thesecondxampleusesanestedstructurewhichmaybemoreconvenientandmorelinguisticallyreasonabléen a
full grammarn this casetwo constraintareusedfor eachpossibledepthof embeddingHowever, thegrammaiisn’t
entirelyadequateinceit could produceembedding$®eyond depthtwo which would notbe subjectto the constraints.
The maximumdepthof embeddingould be boundedby introducinga pathconstraintasmentionedn Section6.



S : SPVI . (.25) | SP VT COP
{sub-intr, SP NP N, WV}
{trns-obj, VT, (PN

I
| ub-trns, SP NP N, VT} |
N
{intrans-ref, VI, SP RC VI

{s
{sub-obj, SPNP N, OP NP N} |
}s

SP| OP: NP| NP RC(.3) |
{sub-intr, NP N RCWV} | {sub-trns, NP N, RC VT} |
{trns-obj, RC VT2, NP N};

RC: who VI | who VT OP | who SP VT2 |
{trns-obj, VI, OP NP N} | {sub-trns, SP NP N, VT2};

NP : ART ADJ N | {noun-art, N, ART} | {noun-adj, N, ADJ};

ART: "" | the | a;

ADJ: "" (0.6) | quick | happy | hungry | nasty | mangy | crazy | sleazy;
N : boy | boys | girl | girls | Mary | John | cat | cats | dog | dogs;
VI : walks | walk | bites | bite | eats | eat | barks | bark;

VT | VT2 : chases | chase | feeds | feed | sees | see | walks | walk | bites |
bite;

sub-intr {

boy | girl | Mary | John : walks | eats;
boys | girls : walk | eat;
cat | dog : walks | bites | eats | barks;
cats | dogs : walk | bite | eat | bark;
cat | cats ! bark | barks;
}
sub-trns {
boy | girl | Mary | John : chases | feeds | sees(.1) | wal ks;
boys | girls : chase | feed | see(.1l) | walk;
cat | dog . chases | sees(.2) | bites;
cats | dogs : chase | see(.2) | bite;
}
trns-obj {
walk | walks : cat | cats | dog | dogs;
see | sees : cat | cats;
}
sub-obj {
Mary | Mary;
John ! John;
}

intrans-ref {

wal ks | walk ! wal ks | wal k;

bites | bite ! bites | bite;

eats | eat ! eats | eat;

barks | bark ! barks | bark;
noun-adj {

boy | boys | girl | girls | Mary | John ! nangy;

John | cat | cats | dog | dogs ! sleazy;
noun-art {

Mary | John :

boys | girls | cats | dogs ! a;

boy | girl | cat | dog !

Figure5: A morecomplex SLG grammar



2.4 A larger example

Figure5 shavs amuchmorecomplex SL G grammamwhich producessomereasonablynterestingenglishsentences.
Onceit is resoled, this grammarproducesan SCFGwith 140 non-terminalsand442 productionswhichis consider
ably largerthanthe original grammar Somesentenceproducedwith this grammararelistedin Figure6.

a dog bites the happy boys .

dogs who chase the hungry cat bite nasty girls who wal k .

the crazy cat wal ks .

the hungry cats who wal k chase the hungry dog who chases the crazy girls .
the mangy dogs who wal k bite the quick dog .

a nasty cat who sees the mangy cats bites .

girls chase the sleazy girls .

hungry cats eat .

the nasty cats bite Mary .

the nasty cat who a crazy girl chases bites the crazy boys .

Figure6: Sentencegeneratedby the complex grammar

3 Resolvingthe grammar

This sectionexplainsthe processy which SL G takesagrammarinvolving constraintandtransformst into a gram-
marin standardsCFGform. It doesthisby resolvingeachof theconstraintsResolvingaconstrainis arathercomplex

processbut essentiallynvolvessplitting eachof the symbolsalongthe sourceandgoal pathsinto sub-symbolsywhich

correspondo termsor conjunctionf termsin theconstrainfunction. Thetrick is correctlycomputingheproduction
probabilities.

3.1 Resolvinga simple constraint

S AB| AC| {foo, A B};
A i (0.5) | j (0.3) | k (0.2);
B: x (0.6) | y (0.4);

Figure7: An SLG grammamith onesimpleconstraint.

Considerthe grammardepictedn Figure7. The sourcesymbolproducesitherA B or A C, A produces, j, or k, and
B producex ory. However, whenS producesA B, the productionout of A shouldconstrainthe productionout of B.
Theconstrainfunction,foo, indicateghatwhenA producesani, B will produceanx with probability (proh) 0.27273
anday with proh 0.72727 (afterfiltering the baseB distribution). Butif A producesaj or k, B mustproducex.

Toresohetheconstraintwe startatthesourcesymbol,A. A sub-symbols createdor eachtermor setof termsthat
couldbematchedvy a sourceproduction.In this case no productionscanmatchmorethanoneterm, but productioni
matchederm 1 andproductiong andk matchterm?2. Thereforetwo nen symbolsarecreated A-1S0.1 only produces
i, thusmatchingterm1, andA-1S0.2 produceg or k, thusmatchingterm?2. Therelative frequeng of j andk shouldnot
changesoA-1S0.1 will producg with proh 0.6 andk with proh 0.4. The source strengthof eachof the sub-symbols
is the proh thatthe original symbol,A, would have producedneof the productionsn the sub-symbol For example,
the sourcestrengthof A-1S0.1 is the proh thatA produces, or 0.5. Thesourcestrengthof A-1S0.2 will be0.2 + 0.3,
or 0.5 aswell.

Now we takea stepup towardstheroot. In this simplecasethe sourcepathwasonly onesymbollong sowe are
now attheroot. Eachroot productionthatmatcheghe constrainwill be split. A productionmatcheghis constrainif
it containsatleastoneA andoneB, soonly thefirst constraintmatchesProductionA B will bereplacedwith apair of
productionsA-1S0.1 B-1G0.1 andA-1S0.2 B-1G0.2. Theproh thatA-1S0.1 B-1G0.1 is usedis equalto the product
of the original proh of A B, 0.5, andthe sourcestrengthof sub-symbolA-1S0.1, also0.5. Thisis the proh thatthe
originalgrammarmwould have producedani, whichis 0.25. Theproh thatA-1S0.2 B.1G0.2 is produceds theproduct



of 0.5 andthesourcestrengthof A-1S0.2, whichis also0.25. Notethatthe overall proh of producingaj, 0.3, hasnot
changed.

Whatremaindgs to definethe new B sub-symbolsB-1G0.1 andB-1G0.2. B-1G0.1 is theversionof B thatshould
be producedvhenterm 1 of the constraintis satisfied. Thus,the distribution for B-1G0.1 is the baseB distribution,
(0.6, 0.4), filtered by the first term of foo, (0.2, 0.8), which is be calledthe constraining distribution. The resulting
distributionis (0.27273, 0.72727). B-1G0.2 mustsatisfythesecondermof foo, whichhasaconstraininglistributionof
(1.0, 0.0), andthereforeproduce®only x. BecausesymbolB itself is nolongerused the grammareductionprocedure
(Sectiond) eliminatedt. Figure8 shavs theresultingfully-resolvedgrammar For sucha simpleexample,the useof
theconstraindidn’t actuallyhelpreducethe sizeof thegrammar

S: A-1S0.1 B-1@&0.1 (0.25) | A-1S0.2 B-1(0.2 (0.25) | AC (0.5);
Ar i (0.5) | j (0.3) | k (0.2);

A-1S0.1: i;

A-1S0.2: j (0.6) | k (0.4);

B-1@0.1: x (0.27273) | y (0.72727);

B-1Q0. 2: x;

Figure8: Thesimplegrammarwith the constraintresohed.

3.2 Resolvinga deeperconstraint

SS AB| AAB| E| {foo, AC B D};
AL C| CC| E

Ciljlk

B: D| E

D x| v;

foo

{
Pl ;X (0.2) | y (0.8);

Figure9: A grammawith a moderatelycomplex constraint.

If we extendthe sourceandgoal pathsandallow multiple referenceso a sourcepathsymbolin a singleproduction,
theprocesof resolvinga constrainbbecomesnorecomplex. Considerthegrammaiin Figure9. The sourcepathand
goalpathof the constrainthow have two symbolseach.Additionally, S canproducea productionwith two A’sandA
canproducea productionwith two C’s. Finally, theproductionj from C satisfieswo constraintsEachof theseactors
makegresolvingthe constrainimorecomple.

As before,we begin at the sourcesymbol,C. Threesub-symbolawill be created.C-1S0 producenly k, which
doesnot matchary terms. C-150.1 produced, which matchegerm1. C-1S0.1.2 produceg, which matchesoth
terms. All threesub-symbolshave a sourcestrengthof 1/3. Now we stepup the sourcepathto symbolA. We
will have to createsix sub-symboldor A to cover all possiblecombinationsof termsthat might be satisfiedby its
productions.The first sub-symbol A-1S1 shouldsatisfyno terms. Therefore jts productionswill be C-1S0, C-1S0
C-1S0, andE. The sourcestrengthof symbolA-1S1 is the sumof the productionstrengthsfor the threeproductions.
A productionstrengthis the original proh of the productionmultiplied by the sourcestrengthf ary sub-symbolsn
the production.Thus,the productionstrengthof E is just 1 /3. The productionstrengthof C-1S0is 1/3 x 1/3 = 1/9
andthe productionstrengthof C-1S0 C-1S0 will be 1/27. Thetotal sourcestrengthof A-1S1 will thereforebe13/27.
Thisis theproh thatthe symbolA would not have producedani or aj. Theproh of eachproductionin A-1S1 will be
theproductionstrengthdividedby A-1S1’s sourcestrength.In otherwords,the productionsarenormalized.

Thesecondub-symboproducedA-1S1.1, shouldleadto productionghatsatisfyterm1 of theconstrainfunction.
Thus, it shouldalwaysproducea C sub-symbolhich itself producesexactly onei. The productionE is therefore
droppedbecauset doesnot containa C. ProductionC becomesC-1S0.1 with productionstrengtht /9. ProductionC
C is split into two productionsC-1S0.1 C-1S0 and C-1S0 C-1S0.1, eachwith strengthl/27. Thus,eitherA-1S1.1
produces, i k, or k i. The overall sourcestrengthof A-1S1.1 is 4/27. To take one more example, sub-symbola-
1S1.2x1.2 shouldsatisfyterm1 in two waysandterm?2 in oneway. Thereforejt musteitherproduceij orji. It will
have two productionsC-1S0.1 C-1S0.1.2 andC-1S0.1.2 C-1S0.1, eachwith strengthl /27.

Now we stepupto theroot level, S. For eachroot productionthatcontainsatleastone A andaB, we will createa
sub-productiorfor eachcombinationof termsthatwe couldsatisfyby replacingthe A’s with variousA sub-symbols,



plus one productionin which B is replacedby a sub-symbokhat doesnt reachthe goal. ProductionE will remain
unchangedhut productionA B will bereplacedy seven productions.

Thefirst of theseis A B-1N1, whereB-1N1 is a newly createdsub-symbolbf B that doesnot completethe goal
pathandis thereforenot subjectto the constraint.In this casethe goalpathis B D soB-1N1 cannotproducea D and
thereforeproducegust E. Thegoalproh of symbolB is the proh thatB produces pathreachingthe goal. In this
case,t is theproh thatit producedD, or 1/2. Theproh of productionA B-1N1 will be weightedby oneminusthe
goalproh andwill thusbe1/3 x 1/2 = 1/6.

The othersix sub-productionsvill becreatedy replacingA with oneof its six sub-symbolandreplacingB with
a sub-symbothatis guaranteedo reachthe goaland,whenit does,producesa goal whoseproductionshave been
filtered by the constrainingdistribution determinedoy the A’s. The proh of eachproductionwill be equalto the
productof the original productionproh, 1/3, the proh thatB reacheghe goal, 1/2, andthe sourcestrengthof the
subA symbolsused. For example,productionA-1S1.2x1.2 B-1G1.2x1.2 hasproh 1/3 x 1/2 x 1/27 = 0.00617.
SymbolB-1G1.2x1.2 will becreatedsuchthatit producesa sub-symbobf D whosedistributionis filtered by term 1
twice andterm 2 once. However, becausderm 2 eliminatesy, theterm1 filtering hasno effect andthis symboljust
produces.

Thesub-productionfor A A B will beevenmorecomplex becausegherearetwo A’s. In additionto the production
A A B-1N1 for whichB-1N1 doesnt reachthe goal,we mustform anew productionfor every way thatwe canreplace
the A’s by subA’s. In this casethatwill resultin 1 + 6 x 6 = 37 productions.For each,a subB symbolwill be
createdhatis guaranteetb reachthe goalandis subjectto theappropriatgermfilters.

After having resoledthe constraintandreducedhe grammaytheresultingSCFGrequires25 non-terminalsand
85 productionsTherefore assuminghatthe resultinggrammatis whatwe intendedtheuseof theconstrainreduced
theoriginal grammatby afactorof about6.

3.3 Resolvingmultiple constraints

The constraintresolutionprocesshecomesnore complicatedaswe introducemultiple constraintsgspeciallywhen
thoseconstraintsharemary of thesamesymbols.Multiple constraintareresohedoneatatime. In mostcasesthe
orderof resolutiondoesnot matter As we sav in thelastsection whena constrainis resohedit generates number
of sub-symbols Whenwe resol\e a secondconstraintthat usessomeof thosesamesymbols,the secondconstraint
mustbeappliedto eachsub-symbohsit would beappliedto theoriginal symbols.As youmightwell imagine thishas
the potentialto resultin anexponentialgrowth in the numberof symbols.Neverthelessprovidedthatthe constraints
do notinteracttoo much,fairly large grammarswith hundred®f constraintcanstill beresohed.

The resolutionprocesaaturally handlesmary fairly difficult situationsthat canarisewith multiple constraints.
For example,one might wonderwhat happensvhen constraintsare circular  Considerthe grammarin Figure 10.
ConstraintAB saysthatif A producesle thenB mustproducebed. ConstrainBC saysthatC mustthenbecat, which,
throughconstrainiCA forcesA to beawl andsoon. A bit of thoughtshouldrevealthatthe only valid sentenceén this
languages ate big cow, which SL G correctlydiscovers. If we makethe constraintdotally circularandaddtheterm
cow:ale to functionCA, SLG will complainthatthe startsymbolis over-constrainecdndcannotproducearything.

S: ABC| {AB, A B} | {BC B, C | {CA C A},
A ale | aM | ate;
B: bed | bus | big;
C. cat | cry | cow,

AB {al e: bed; aw :bus; ate:big;}
BC {bed: cat; bus:cry; big:cow}
CA{cat:a\M; cry:ate;}

Figure10: A grammarcontainingcircularconstraints.

Let usnow turn to the problemof resolvingtwo interactingconstraints Considerthe grammatin Figure11. This
containstwo constraints{AB, A, B} and{DC, A D, B C}, whichwe will referto asconstraintsl and2, respectrely.
If constraintl is resohedfirst, we areleft with the intermediategrammarshown in Figure12. We cannow resohe
constraint2 aswe did in the caseof a single constraint,provided we treatthe subA symbolsas A andthe subB
symbolsasB. A-1S0.2 doesnot producea D, soits productionwon't be affected. A-1S0.1 only produces, sowe
will splitit into two sub-symbolspnethat producesa subD thatalwaysproducesv andonethatproducesa subD
thatalwaysproduces. The productionA-1S0.1 B-1G0.1 will be split into threesub-productionsgachwith its own
subB-1G0.1, asdiscussedn Section3.2.



S: AB| {AB, A B} | {DC AD B C;
A| B: D| G
D w| x;
C vy z
AB {D. D(0.2) | C
C D (0.8 | C}
DC {w y (0.4) | z;
x:y (0.6) | z;}

Figure11: A grammamwith two interactingconstraints.

S A-1S0.1 B-1@0.1 (0.5) | A-1S0.2 B-1G0.2 (0.5) | {DC, A D, B C};

A-1S0.1: D
B-130.1: D (0.2) | C(0.8);
A-1S0.2: C
B-13.2: D (0.8) | C(0.2);
D w| x;
C vy | z
DC {w y (0.4) | z;
x:y (0.6) | z;}

Figure12: Thegrammarf Figurellafterresolvingconstraintl.

Figure13 shows thefinal grammayafterresolvingconstraintl followedby constrain®2, in a short-hanchotation.
Eachof thefour linesrepresentsneproductionfrom therootsymbol.Numbergrecedingolonsareprobabilitiesand
bracketgepresentreedepth.For example,the secondine indicateghat, with 20%proh, a symbolwill be produced
thatproducesanotheisymbolthatproducesaw followedby a symbolthatwill producea symbolthatproducey 40%
of thetime andz otherwise.

However, the situationwould be moredifficult if we hadfirst resoled constrain?2 beforeconstraintl. Starting
with thegrammaiin Figure1l andresolvingconstrain?2 would have left usin the stateshavn in Figure14. We can
begin asusualby creatingnew symbolsalongthe sourcepath.However, we will notbeableto simply createnew goal
pathsymbolswhoseproductiongeflectthe effect of the constrainingdistribution becauseachof the subB symbols
producesithera C or aD. We will notbe ableto changaherelative frequeng of C andD simply by modifying the
productionprobabilitiesof the goal pathsymbols. In general problemslike thesecanoccurall alongthe goal path
andcanbedueto the effectsof mary previousconstraints.

To explain how this situationis resohed, we will have to be moreexplicit aboutwhatreally goeson in resolving
the goal pathandroot of a constraint. We bagin by definingtwo termsthat relateto the sub-symbolghat will be
createdalongthe goalpath. Thegoal distribution of a symbolB on the goalpathis theweightedsumof distributions
generatedy all goalsymbolsreachabldrom B. Thatis, if we startwith B andgeneratall possiblewaysof traveling
down the goal pathto the goal (wherewe might be usingsub-symbolgreatedn resolvingprevious constraints)the
goaldistributionwill bethe averageof the productiondistributions of the goalandsub-goakymbolsweightedby the
probabilitiesof reachingthosesymbols.Whenwe createa new subB symbolthatis subjectto a certainconstraining
distribution, the new goal distribution of the sub-symbokhouldbe equivalentto the original goal distributionfiltered
by the constrainingistribution. Thisis true of all symbolson the goal path. Thegoal strengthof the subB symbolis
thedot-producbf theoriginal goaldistribution andthe constrainingdistribution.

As before,the procesf resolvingconstraintl startsby creatingthe new sourcepathsub-symbolsandcreating
sub-productionsn theroot symbol,S. The setof termsthataresatisfiedby the sub-A symbolsin eachof the new root
productionsdetermineghe constrainingdistribution for that production. For eachsub-productionyve will createa
new subB symbolwhosegoaldistributionhasbeerfiltered by the constraininglistribution. Thenew rootproductions
will beasfollows:

0.5 [C] [0.8 D] 0.2: C
0.2 [[w]] [[0.4: y | 0.6: z]]
0.2: [[x]] [[0.6: y | 0.4: z]]
0.1: [O0 [DO

Figure13: Thegrammarf Figure11l afterresolvingbothconstraintsin ashort-hanchotation.
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S: A B-1N1 (0.5) | A-1S1 B-1Gl (0.25) | A-1S1.1 B-1Gl.1 (0.125) |
A-1S1.2 B-1GL.2 (0.125) | {AB, A B};

A| B: D| G

B- 1N1: D

A-1S1 | B-1GL: C

A-1S1.1: D 1S0.

B-1Gl. 1: C 1Q0.

A-1S1.2: D 1S0.

B-1Gl. 2: C 1Q0.

AB {D: D (0.2)
C. D (0.8)

W,
y (0.4) | z (0.6);
X;

y (0.6) | z (0.4);

T NNRER

o
&
Figure14: Thegrammarf Figure1lafterresolvingconstraint2.

A-2S0.1 B-1N1-2G0.1
A-250.2 B-1N1-2G0.2
A-1S1-250.2 B-1G1-2G0.2
A-1S1.1-2S0.1 B-1G1.1-2G0.1
A-1S1.2-2S0.1 B-1G1.2-2G0.1

If the goal pathsymbol, B, is actuallythe goal, creatinga sub-symbois easy We just filter its distribution with
the constraininglistribution. However, if B is notthe goalbut is furtherup on the goal path,producinga constrained
sub-symbols morecomple. Let'simaginethatthe symbolfollowing B onthe sourcepathis C. In orderto createa
subB, wefirst recursvely createa sub-C for eachB productionthatusesa C andreplacetheold C with theconstrained
one. Theproh of the productionis scaledby the goal strengthof the sub-C. Onceall productionshave beenscaled,
their probabilitiesarerenormalizecdasfollows. First, eachgroupof productionghatderived from the sameancestor
productionin the original grammaiis normalizedamongsitself sothatthe sumof probabilitiesin the groupremains
thesame lf ary groupswereeliminated all productionprobabilitiesarethennormalizedacrossheboard.

A similar processoccursin the root symbol. Oncethe new subB hasbeencreatedthe proh of the new root
productionusingit is scaledby the goal strengthof the subB. Whenthis hasbeendonefor eachnew production the
productionprobabilitiesarerenormalizedvithin groupswherea groupis a setof sub-productionthatsharethe same
ancestotin the original grammarandwhich have the sameconstrainingdistribution. If ary groupsdied off because
they wereover-constrainedthe productionsarenormalizedoverall.

In the caseof our example,productionA B-1N1, with proh 0.5 wasdividedinto A-2S0.1 B-1N1-2G0.1 and A-
2S0.2 B-1N1-2G0.2. The constrainingdistribution for the formeris (0.2:D 0.8:C) andfor thelatteris (0.8:D 0.2:C).
Theinitial goaldistributionfor B-1N1 was(1.0:D 0.0:C). Thereforethegoalstrengthof B-1N1-2G0.1 was(.2 andthe
goalstrengthof B-1N1-2G0.2 was0.8. As aresult,thefinal proh of productionA-2S0.1 B-1N1-2G0.1 is 0.1 andthe
final proh of productionA-2S0.2 B-1N1-2G0.2 is 0.4.

0.4 [ [0
0.1 [ []
0.2: [[w] [[0.4: y | 0.6: z]]
0.2: [[x]] [[0.6: y | 0.4 z]]
0.1: [O] [D

Figure15: Thegrammarf Figure11l afterresolvingconstraint? followedby constraintl, in short-hancdhotation.

The resultinggrammay after both constraintshave beenresoled, is shavn in Figure15. It is equivalentto the
grammaiin Figure13,whichwasobtainedby resolvingtheconstraintsn theoppositeorder but doesnot have exactly
the samestructure. If the first two productionsin Figure 15 were combined,they would be equivalentto the first
productionin Figure13.

3.4 Constraint conflicts

S: AB| {foo, AB, B}

A CB| {foo, C B}

B| C i | j;

foo {i: i (0.99) | j
joi(0.01) | i}

Figure16: A grammarcontaininga potentialconstraintconflict.
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S A-1S1.1 B-1@0.1 (0.5) | A-1S1.2 B-1G0.2 (0.5);
A-1S1.1: CB-180.1 | {foo, C, B};

B-1S0.1: i;

B-1&0.1: i (0.99) | j (0.01);
A-1S1.2: CB-1S0.2 | {foo, C, B};
B-1S0.2: j;

B-1G0.2: i (0.01) | j (0.99);

Figurel7: Thegrammarof Figure16 afterconstrainty is resohed.

Althoughmostpairsof constraintanayberesolhedin eitherorderto the sameeffect, thereis onesituationin which
thisis not possible. If the root andgoal pathof constraintx falls on eitherthe sourceor goal pathof constrainty,
thenX mustberesohed beforeY. Thereasoris apparenif we considerthe examplein Figure16. We will referto
constraint{foo, C, B} asX andto the otherconstraintasyY. The sourceof X, A, andits goal path,B, fall onthe source
pathof Y.

If wewereto resohe Y first, we would beleft with thegrammarshavn in Figurel7. Therearenow two SubA'’s,
eachwith its own copyof constrainiX. But eachoneproducesa subB thateitherproduces orj. We cannoffilter the
B’s goaldistributionsbecausehey only producea singlesymbol. Thereforejt is not possibleto resohe X. However,
if we wereto have resolhedX first, it would not have seriouslyaffectedtheresolutionof Y.

Thereforewheneerthereis a constraintonflict of this type,theconstraintarereorderedothe properconstraint
is resolhedfirst. However, if theorderingdependenciearecircular, thereis a problem.SL G givestheuserthe option
of ignoringsuchconflicts,but a bettersolutionis to restructureéhe grammaisothe constrainorderingis well defined.

4 Minimizing the grammar

Theproces®f resolvingthegrammarcreatesnary new symbolsandproductionssomeof whichmaybesuperfluous.
Therefore afterresolution the grammatis minimizedto makeit morecompact.Becauseof thetradeof betweerthe
numberof symbolsandthe numberof productionsthereis no cleardefinition of a minimal CFG, asthereis with a
finite statemachine Neverthelessa numberof helpful stepscanbetaken.

1. Eliminating epsilonproductions Thefirst stepis to eliminateary epsilonproductionsromthegrammar This
usesa standarcalgorithm,describedn HopcroftandUllman (1979),thathasbeenadaptedo properlyhandle
theprobabilitiesin a SCFG.It beginsby determiningfor eachsymbol,the proh thatthe symbolproducenly
epsilon. This usesan iterative procedurehat terminatesoncethe valueshave adequatelysettled. Ordinarily
this only takesa few iterations,but it could potentiallysettleratherslowly. It might be possibleto formulatea
closed-formsolutionto the epsilonprobabilities but it mayinvolve a systemof non-linearequations.

Oncetheepsilonprobabilitieshave beendeterminedfor eachproductionthatusesoneor moresymbolswith a
non-zergproh of producingepsilonandfor eachsubsebf the epsilon-producingymbolsin the production,a
sub-productiors createdn which thosesymbolsareeliminated.The proh of the sub-productionis the product
of theoriginal productionproh, theepsilonprobabilitiesof thesymbolsthatwereremored,andtheprobabilities
thatthe the symbolsremainingdo notreachepsilon.

2. Combining Equivalent Productions Thisis arelatively simplestepin whichary pair of identicalproductions
in asymbolis combinednto a singleproduction.Also, ary productionswith 0.0 proh areremoved.

3. RemovingUnit Productions A unit productionis a productionthatcontainsjust one non-terminal. Thatis,
onenon-terminalis simply replacedby anotherone. As shovn in HopcroftandUliman (1979),if a grammar
usesunit productionsthereis alwaysanequivalentgrammairthatdoesnot. Becausehis processanchangehe
structureof the grammarit is only donewhenaggtessiveminimizationis requested AlthoughHopcroftand
Ulliman (1979)mentionanalgorithmfor remaving unit productiondn a CFG, it is notefficientfor anSCFG.

The algorithmusedin SLG iteratesover the non-terminalsymbols. For eachsymbol, A, it first remoresary

self-unitproductionswhich arealwaysunnecessaryandrenormalizeghe remainingproductionsn A. It then
searchesn other symbolsfor arny unit productionsthat useA. Theseproductionsare removed andreplaced
with A’s productionswith their probabilitiesscaledby the proh of theoriginal production.Any newly created
equivalentproductionsor self-productionsirethenremoved. Whenthis processsompletesall unit productions
will have beenremaved.
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4. Removing Equivalent Symbols The next stepin minimizationis to remove ary symbolsthat have identical
setsof productions. The reductionprocesstendsto createa lot of these. In orderto do this efficiently, the
symbolsarefirst sortedbasedon their productions. Then neighboringsymbolsare comparedand duplicates
remoed. Any referencedo the duplicate symbolswithin productionsmust be changedo refer insteadto
the surviving symbol. Unlessaggressie minimizationis requestediwo symbolswhich were generatedrom
differentancestosymbolsduringthereductionprocessarenot considerecgquialent.

Becauseeplacingequivalentsymbolscancreateequivalentproductions Step2 mustberepeatedThis, in turn,
cancreatemore equivalentsymbolsso Step4 is run again. This continuesuntil thereareno moreequialent
symbols.This usuallytakesjust afew iterations.

5. RemovingUnreachableSymbols Finally, ary symbolsthatarenotreachabldérom the startsymbol,andcould
thereforenot participatein thegrammarareremaoved.

5 Word prediction

Althoughit is easyto generatesentencessingary form of SCFG,in orderto parsesentenceandgeneratenext-word
likelihood distributions, it is helpful to corvert the grammarto a regular form. A numberof algorithmshave been
developedfor parsingcontet-free languagesmostnotablythe CYK algorithm(Hopcroft& Uliman, 1979). Most of
theserequirethe grammarto be in Chomsly normalform, in which eachproductioncaneitherconsistof a terminal
symbolor two non-terminalsymbols. Although they are efficient for parsingwhole sentenceghesealgorithmsare
notwell-suitedto performingword-predictiorgivenpartof a sentenceparticularlyif wewouldlike to doit iteratively
aftereachwordin thesentence.

The methodusedby SLG relieson a grammarin Greibachnormalform, in which eachproductionmustbegin
with aterminal. With the grammarin this form, it is relatively easyto performword prediction. As the sentencés
processedrom left to right, the parseikeepsa list of every possiblecontinuatiorwith their associategrobabilities.
The continuationsare in the form of a terminal followed by one or more other symbols. It is thereforeeasyto
generatea distribution of next words. Whenthe next word is processedgontinuationsnot startingwith that word
are discarded. The first word is droppedfrom eachremainingcontinuationand, if the new first symbolis a non-
terminal,new continuationsare createdwith the first symbolreplacedby eachof its productions.While, in theory
thisalgorithmcouldgeneratenexponentiallylargelist of continuationgor a highly ambiguougirammayin practice
it doesquite well on pseudo-naturdanguages.Naturallanguagesgendto be only mildly ambiguousgspeciallyif
semanticonstraintareenforced.f thereweretoo muchambiguity we would not beableto understandhem.

5.1 Converting an SCFGto Greibachnormal form

In orderto cornvertan SCFGto Greibachnormalform (GNF), thealgorithmdescribedn HopcroftandUIlIman (1979)
wasadaptedo handleproductionprobabilities. The algorithmneednot startwith a grammarin Chomslk normal
form, but we will relaxtherestrictionthatall symbolsfollowing thefirst terminalin a GNF productionmustbe non-
terminals. Figure 18 shavs a modifiedversionof the first stepof the algorithm,indicatinghow the probabilitiesof
new productionsshouldbe calculatedo maintainequivalence.Probabilitiesarelistedin parenthese®llowing each
production.ThenotationPy refersto theproh of production? beinggeneratedby its parentsymbol.

Oncethis stepis complete,it will bethe casethat, for all productions(, of theform A; — A;~, ¢ will beless
thanj. Thereforewe caneliminateall suchproductiondy replacingthemwith all productiondormedby replacing
A; with oneof its productions,2. Theproh of the new productionwill be Py x Pgr. As long aswe startwith the
lastsymbolandwork to thefirst, we will neverintroducea new productionthat startswith a non-terminal. A similar
processanthenbe performedo replaceall productionsof theform B; — A;~. Becausgherecanbeno B; — B;~y
productionsall productionswill now begin with aterminalsymbol.

6 Discussion

SL G is intendedto help usersdesigninterestingcontect-free languages.It is especiallyusefulin creatingtraining
ervironmentdor machindearningexperimentsWithout usingconstraintsit is still aconvenienttool for workingwith
stochasticontet-free andregular languagesandincludesa numberof new algorithmsfor transforminggrammars.
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1 fork«< ltomdo

2 forj« 1tok — 1do

3 for eachproduction,@, of theform Ay — A;« do
4 for eachproduction,i2, of theform A; — # do
5 addproductiond; — fa (Pg x Pr)

6 remove productiond, — Aja

7

8

9

z 0
for eachproduction @, of theform A, — Az« do
T+ z+ Py

10 for eachproduction @, of theform 4, — Az« do
11 addproductionB;, — o (Pg x (1 —z)/z)
12 addproductionB, — aBy (Pg)
13 remove productiond, — Aga
14 for eachproduction@, of theform A, — 3, whereg doesnt begin with A; do
15 addproductiond,, — B (Pg x z/(1 —z))

Figure 18: A modifiedversionof Figure 4.9 of Hopcroftand Ullmann (1979)indicatinghow to handleproduction
probabilitiesin corvertingto GNF.

However, theuseof constraintgangreatlysimplify thewriting of pseudo-naturdhnguagedy separatinghe syntaxof
theunderlyinggrammarrom semanti@andpragmatidnfluencesandallowing importantcontingencieso becarefully
controlled.

Althoughthemethodfor specifyingSL G constraintss quite powerful, it doeshave somelimitationsandthereare
several possibleextensionghatmayimprove it. Currently all of the constraintdor a particularroot symbolmustbe
satisfied.Thereforethey essentiallyform alogical conjunction.The grammarcould be moreflexible if it allowedan
arbitraryboolearformulaof constraint$o bespecifiedor eachsymbol.For example,onemightspecifythatconstraint
A andconstrainB mustapplyor constrainiC mayapply. If we hadalanguagewith adjectvesandcompounchouns,
we might wish to producephrasesuchas“the happy dog and the sad dog” or “the happy dog and the happy boy”,
but not “the happy dog and the happy dog”, which would be redundant.We could do this by specifyingthat either
the nounsmustdiffer or the adjectves mustdiffer. In the currentimplementationthis is possible,but muchless
corvenient.

Another shorthandthat may be usefulis the addition of single-pathconstraints. That is, one might filter the
productionsof a goal symbolat the endof a particularpathout of the root symbol,but notin a way contingenton
contet. Thesewould be helpfulin simplifying mary grammarsindcouldbe usedto boundthe depthof recursion.

SLG is written in C and should compile on most systems. The sourcefor the latestversionis available at
http://www.cs.cmu.edu/~dr/Projects/SLG/slg.tar.gz

References

ChristiansenM. H., & ChaterN. (in press) Towardaconnectionismodelof recursiorin humanlinguisticperformanceCognitive
Science

Hopcroft,J. E., & Ullman, J.D. (1979). Introductionto automatatheory, languagesand computation.Reading MA: Addison-
Wesley Publishing.

14



A SLG Usage

SL G handlestwo typesof files, grammarfiles andsymbolfiles Grammairfiles typically have a .slg extensionand
containan SLG grammar The samplegrammalffiles describedn this reportareincludedwith the sourcedistribution
in the Examples/ directory

In orderto useagrammarit mustberesolvedor convertedto standardlSCFGform. SL G canthenwrite asymbol
file, which storeghesymbolsandtransitionsn thegrammaiin compressedomputeireadabldorm. The symbolfile,
which normallyendswith extension.sym canlaterbeloadedinto SL G to avoid repeatinghe corversionprocess.

Finally, if agrammaris to be usedto makeprobability predictionsjt mustbein GreibachNormal Form. Oncea
grammarhasbeenconvertedto GNF, it is commonto give its symbolfile the extension.gnfto distinguishit from a
.symfile containinga grammaithatis notin GNF

usageslg[commands]

-h

-v num
-r num
-

-d string

-cfile

displaysthis message

setstheverbositylevel. 0 = silent,3 = maximum,1 = default
setstherandomnumbergeneratoseedvalue
seedgherandomnumbergeneratobasedn thetime (doneautomaticallyat startup)
setsthe symbolseparatofor sentenc@utput

loadsan SL G file andresohesit to a SCFG

toggleswhethercleanups aggressie. If so,thebasicparsetreemayberearrangedo compresshe
grammar (default:false)

togglestheremoval of unusederminalswhenconvertingan SL G file (default:true)
setgtheconstrainsensitvity. 2, thedefault,will causeanerrorif constraintconflict. 1 will produce
awarningandO will besilent.

printsthe grammairto stdoutin legible format

liststheterminalsymbolsin the orderin whichtheir probabilitiesappearalphabetical)
savesthecurrentgrammaiin a binarysymbolfile

loadsa nenv grammaifrom a binary symbolfile

convertsthegrammarto Greibachnormalform

generatesentencessingthe currentgrammar

generatesentenceandgivestheword predictions

readssentenceandgivestheir word predictions

setsthe maxnumberof wordspersentencéor -n and-k (-1)

toggleswhether-n with verbosity ¢, =2 will produceparsetreesin long or shortformat (default:
short).

toggleswhether-p and-k displaythe predictionof thefirst wordin eachsentencédefault: yes)
toggleswhether-p and-k displaythe predictionfollowing the lastword in eachsentencddefault:
no)

calculateghe numberof parsegpossiblewith thisgrammarthatdon't go below the specifieddepth
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